The Hepcidin/Ferroportin axis modulates proliferation of pulmonary artery smooth muscle cells

Studies were undertaken to examine any role for the hepcidin/ferroportin axis in proliferative responses of human pulmonary artery smooth muscle cells (hPASMCs). Entirely novel findings have demonstrated the presence of ferroportin in hPASMCs. Hepcidin treatment caused increased proliferation of the...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 8; no. 1; pp. 12972 - 11
Main Authors Ramakrishnan, Latha, Pedersen, Sofia L., Toe, Quezia K., West, Laura E., Mumby, Sharon, Casbolt, Helen, Issitt, Theo, Garfield, Benjamin, Lawrie, Allan, Wort, S. John, Quinlan, Gregory J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.08.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Studies were undertaken to examine any role for the hepcidin/ferroportin axis in proliferative responses of human pulmonary artery smooth muscle cells (hPASMCs). Entirely novel findings have demonstrated the presence of ferroportin in hPASMCs. Hepcidin treatment caused increased proliferation of these cells most likely by binding ferroportin resulting in internalisation and cellular iron retention. Cellular iron content increased with hepcidin treatment. Stabilisation of ferroportin expression and activity via intervention with the therapeutic monoclonal antibody LY2928057 reversed proliferation and cellular iron accumulation. Additionally, IL-6 treatment was found to enhance proliferation and iron accumulation in hPASMCs; intervention with LY2928057 prevented this response. IL-6 was also found to increase hepcidin transcription and release from hPASMCs suggesting a potential autocrine response. Hepcidin or IL-6 mediated iron accumulation contributes to proliferation in hPASMCs; ferroportin mediated cellular iron excretion limits proliferation. Haemoglobin also caused proliferation of hPASMCs; in other novel findings, CD163, the haemoglobin/haptoglobin receptor, was found on these cells and offers a means for cellular uptake of iron via haemoglobin. Il-6 was also found to modulate CD163 on these cells. These data contribute to a better understanding of how disrupted iron homeostasis may induce vascular remodelling, such as in pulmonary arterial hypertension.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-31095-0