Development of high-throughput ATR-FTIR technology for rapid triage of brain cancer

Non-specific symptoms, as well as the lack of a cost-effective test to triage patients in primary care, has resulted in increased time-to-diagnosis and a poor prognosis for brain cancer patients. A rapid, cost-effective, triage test could significantly improve this patient pathway. A blood test usin...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 4501 - 9
Main Authors Butler, Holly J., Brennan, Paul M., Cameron, James M., Finlayson, Duncan, Hegarty, Mark G., Jenkinson, Michael D., Palmer, David S., Smith, Benjamin R., Baker, Matthew J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.10.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Non-specific symptoms, as well as the lack of a cost-effective test to triage patients in primary care, has resulted in increased time-to-diagnosis and a poor prognosis for brain cancer patients. A rapid, cost-effective, triage test could significantly improve this patient pathway. A blood test using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy for the detection of brain cancer, alongside machine learning technology, is advancing towards clinical translation. However, whilst the methodology is simple and does not require extensive sample preparation, the throughput of such an approach is limited. Here we describe the development of instrumentation for the analysis of serum that is able to differentiate cancer and control patients at a sensitivity and specificity of 93.2% and 92.8%. Furthermore, preliminary data from the first prospective clinical validation study of its kind are presented, demonstrating how this innovative technology can triage patients and allow rapid access to imaging. Diagnosing brain cancer is frequently difficult and requires specialist equipment. Here, the authors develop their previous attenuated total reflectance-Fourier transform infrared spectroscopy method and incoporate the use of disposable silicon wafers for diagnosing brain cancer using serum samples.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-12527-5