Dynamics, phylogeny and phyto-stimulating potential of chitinase synthesizing bacterial root endosymbiosiome of North Western Himalayan Brassica rapa L

The less phytopathogen susceptibility in Himalayan Brassica rapa L. has made it an exceptional crop eluding synthetic pesticide inputs, thereby guarantying economically well-founded and ecologically sustainable agriculture. The relevance of niche microflora of this crop has not been deliberated in t...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; p. 6742
Main Authors Padder, Shahid Ahmad, Rather, Rauoof Ahmad, Bhat, Sajad Ahmad, Shah, M. D., Baba, Tawseef Rehman, Mubarak, N. M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.04.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The less phytopathogen susceptibility in Himalayan Brassica rapa L. has made it an exceptional crop eluding synthetic pesticide inputs, thereby guarantying economically well-founded and ecologically sustainable agriculture. The relevance of niche microflora of this crop has not been deliberated in this context, as endosymbiosiome is more stable than their rhizosphere counterparts on account of their restricted acquaintance with altering environment; therefore, the present investigation was carried out to study the endophytic microfloral dynamics across the B . rapa germplasm in context to their ability to produce chitinase and to characterize the screened microflora for functional and biochemical comportments in relevance to plant growth stimulation. A total of 200 colonies of bacterial endophytes were isolated from the roots of B . rapa across the J&K UT, comprising 66 locations. After morphological, ARDRA, and sequence analysis, eighty-one isolates were selected for the study, among the isolated microflora Pseudomonas sp. Bacillus sp. dominated. Likewise, class γ-proteobacteria dominated, followed by Firmicutes. The diversity studies have exposed changing fallouts on all the critical diversity indices, and while screening the isolated microflora for chitinase production, twenty-two strains pertaining to different genera produced chitinase. After carbon source supplementation to the chitinase production media, the average chitinase activity was significantly highest in glycerol supplementation. These 22 strains were further studied, and upon screening them for their fungistatic behavior against six fungal species, wide diversity was observed in this context. The antibiotic sensitivity pattern of the isolated strains against chloramphenicol, rifampicin, amikacin, erythromycin, and polymyxin-B showed that the strains were primarily sensitive to chloramphenicol and erythromycin. Among all the strains, only eleven produced indole acetic acid, ten were able to solubilize tricalcium phosphate and eight produced siderophores. The hydrocyanic acid and ammonia production was observed in seven strains each. Thus, the present investigation revealed that these strains could be used as potential plant growth promoters in sustainable agriculture systems besides putative biocontrol agents.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-11030-0