Identifying influential spreaders by gravity model considering multi-characteristics of nodes
How to identify influential spreaders in complex networks is a topic of general interest in the field of network science. Therefore, it wins an increasing attention and many influential spreaders identification methods have been proposed so far. A significant number of experiments indicate that depe...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 9879 - 11 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.06.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | How to identify influential spreaders in complex networks is a topic of general interest in the field of network science. Therefore, it wins an increasing attention and many influential spreaders identification methods have been proposed so far. A significant number of experiments indicate that depending on a single characteristic of nodes to reliably identify influential spreaders is inadequate. As a result, a series of methods integrating multi-characteristics of nodes have been proposed. In this paper, we propose a gravity model that effectively integrates multi-characteristics of nodes. The number of neighbors, the influence of neighbors, the location of nodes, and the path information between nodes are all taken into consideration in our model. Compared with well-known state-of-the-art methods, empirical analyses of the Susceptible-Infected-Recovered (SIR) spreading dynamics on ten real networks suggest that our model generally performs best. Furthermore, the empirical results suggest that even if our model only considers the second-order neighborhood of nodes, it still performs very competitively. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-14005-3 |