A tightly-bonded and flexible mesoporous zeolite-cotton hybrid hemostat

Achieving rapid definitive hemostasis is essential to ensure survival of patients with massive bleeding in pre-hospital care. It is however challenging to develop hemostatic agents or dressings that simultaneously deliver a fast, long-lasting and safe treatment of hemorrhage. Here, we integrate meso...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; p. 1932
Main Authors Yu, Lisha, Shang, Xiaoqiang, Chen, Hao, Xiao, Liping, Zhu, Yihan, Fan, Jie
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.04.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Achieving rapid definitive hemostasis is essential to ensure survival of patients with massive bleeding in pre-hospital care. It is however challenging to develop hemostatic agents or dressings that simultaneously deliver a fast, long-lasting and safe treatment of hemorrhage. Here, we integrate meso-/micro-porosity, blood coagulation and stability into a flexible zeolite-cotton hybrid hemostat. We employ an on-site template-free growth route that tightly binds mesoporous single-crystal chabazite zeolite onto the surface of cotton fibers. This hemostatic material maintains high procoagulant activity after water flow treatment. Chabazite particles are firmly anchored onto the cotton surface with < 1% leaching after 10 min of sonication. The as-synthesized hemostatic device has superior hemostatic performance over most other clay or zeolite-based inorganic hemostats, in terms of higher procoagulant activity, minimized loss of active components and better scalability for practical applications (a hemostatic T-shirt is hereby demonstrated as an example). Zeolites have attracted attention and have been applied as haemostatic agents; however, there are issues associated with released zeolite powder. Here, the authors report on the growth of zeolites on cotton fibres with high stability and haemostatic ability.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-09849-9