Single-cell normalization and association testing unifying CRISPR screen and gene co-expression analyses with Normalisr
Single-cell RNA sequencing (scRNA-seq) provides unprecedented technical and statistical potential to study gene regulation but is subject to technical variations and sparsity. Furthermore, statistical association testing remains difficult for scRNA-seq. Here we present Normalisr, a normalization and...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 6395 - 13 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
04.11.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Single-cell RNA sequencing (scRNA-seq) provides unprecedented technical and statistical potential to study gene regulation but is subject to technical variations and sparsity. Furthermore, statistical association testing remains difficult for scRNA-seq. Here we present Normalisr, a normalization and statistical association testing framework that unifies single-cell differential expression, co-expression, and CRISPR screen analyses with linear models. By systematically detecting and removing nonlinear confounders arising from library size at mean and variance levels, Normalisr achieves high sensitivity, specificity, speed, and generalizability across multiple scRNA-seq protocols and experimental conditions with unbiased p-value estimation. The superior scalability allows us to reconstruct robust gene regulatory networks from trans-effects of guide RNAs in large-scale single cell CRISPRi screens. On conventional scRNA-seq, Normalisr recovers gene-level co-expression networks that recapitulated known gene functions.
Normalisr removes technical bias in single-cell RNA-seq and detects gene differential and coexpression accurately and efficiently. It also infers gene regulatory and co-expression networks from conventional and CRISPR screen single-cell RNA-seq datasets. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-021-26682-1 |