Single-cell normalization and association testing unifying CRISPR screen and gene co-expression analyses with Normalisr

Single-cell RNA sequencing (scRNA-seq) provides unprecedented technical and statistical potential to study gene regulation but is subject to technical variations and sparsity. Furthermore, statistical association testing remains difficult for scRNA-seq. Here we present Normalisr, a normalization and...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 6395 - 13
Main Author Wang, Lingfei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 04.11.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Single-cell RNA sequencing (scRNA-seq) provides unprecedented technical and statistical potential to study gene regulation but is subject to technical variations and sparsity. Furthermore, statistical association testing remains difficult for scRNA-seq. Here we present Normalisr, a normalization and statistical association testing framework that unifies single-cell differential expression, co-expression, and CRISPR screen analyses with linear models. By systematically detecting and removing nonlinear confounders arising from library size at mean and variance levels, Normalisr achieves high sensitivity, specificity, speed, and generalizability across multiple scRNA-seq protocols and experimental conditions with unbiased p-value estimation. The superior scalability allows us to reconstruct robust gene regulatory networks from trans-effects of guide RNAs in large-scale single cell CRISPRi screens. On conventional scRNA-seq, Normalisr recovers gene-level co-expression networks that recapitulated known gene functions. Normalisr removes technical bias in single-cell RNA-seq and detects gene differential and coexpression accurately and efficiently. It also infers gene regulatory and co-expression networks from conventional and CRISPR screen single-cell RNA-seq datasets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-26682-1