Loss of SIRT1 inhibits hematopoietic stem cell aging and age-dependent mixed phenotype acute leukemia
Aging of hematopoietic stem cells (HSCs) is linked to various blood disorders and malignancies. SIRT1 has been implicated in healthy aging, but its role in HSC aging is poorly understood. Surprisingly, we found that Sirt1 knockout improved the maintenance of quiescence of aging HSCs and their functi...
Saved in:
Published in | Communications biology Vol. 5; no. 1; pp. 396 - 15 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
28.04.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Aging of hematopoietic stem cells (HSCs) is linked to various blood disorders and malignancies. SIRT1 has been implicated in healthy aging, but its role in HSC aging is poorly understood. Surprisingly, we found that
Sirt1
knockout improved the maintenance of quiescence of aging HSCs and their functionality as well as mouse survival in serial bone marrow transplantation (BMT) recipients. The majority of secondary and tertiary BMT recipients of aging wild type donor cells developed B/myeloid mixed phenotype acute leukemia (MPAL), which was markedly inhibited by
Sirt1
knockout. SIRT1 inhibition also reduced the growth and survival of human B/myeloid MPAL cells.
Sirt1
knockout suppressed global gene activation in old HSCs, prominently the genes regulating protein synthesis and oxidative metabolism, which may involve multiple downstream transcriptional factors. Our results demonstrate an unexpected role of SIRT1 in promoting HSC aging and age-dependent MPAL and suggest SIRT1 may be a new therapeutic target for modulating functions of aging HSCs and treatment of MPAL.
Studies employing serial bone marrow transplantation in mice show that Sirt1 knockout improves quiescence maintenance and function of aging hematopoietic stem cells. Sirt1 loss also prevents the development of age-dependent B/myeloid mixed phenotype acute leukemia. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2399-3642 2399-3642 |
DOI: | 10.1038/s42003-022-03340-w |