A fragment of cell adhesion molecule L1 reduces amyloid-β plaques in a mouse model of Alzheimer’s disease

Deposition of amyloid-β (Aβ) in the brain is one of the important histopathological features of Alzheimer’s disease (AD). Previously, we reported a correlation between cell adhesion molecule L1 (L1) expression and the occurrence of AD, but its relationship was unclear. Here, we report that the expre...

Full description

Saved in:
Bibliographic Details
Published inCell death & disease Vol. 13; no. 1; p. 48
Main Authors Hu, Junkai, Lin, Stanley Li, Schachner, Melitta
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.01.2022
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Deposition of amyloid-β (Aβ) in the brain is one of the important histopathological features of Alzheimer’s disease (AD). Previously, we reported a correlation between cell adhesion molecule L1 (L1) expression and the occurrence of AD, but its relationship was unclear. Here, we report that the expression of L1 and a 70 kDa cleavage product of L1 (L1-70) was reduced in the hippocampus of AD (APPswe) mice. Interestingly, upregulation of L1-70 expression in the hippocampus of 18-month-old APPswe mice, by parabiosis involving the joining of the circulatory system of an 18-month-old APPswe mouse with a 2-month-old wild-type C57BL/6 mouse, reduced amyloid plaque deposition. Furthermore, the reduction was accompanied by the appearance of a high number of activated microglia. Mechanistically, we observed that L1-70 could combine with topoisomerase 1 (Top1) to form a complex, L1-70/Top1, that was able to regulate expression of macrophage migration inhibitory factor (MIF), resulting in the activation of microglia and reduction of Aβ plaques. Also, transforming growth factor β1 (TGFβ-1) transferred from the blood of young wild-type C57BL/6 mice to the aged AD mice, was identified as a circulating factor that induces full-length L1 and L1-70 expression. All together, these findings suggest that L1-70 contributes to the clearance of Aβ in AD, thereby adding a novel perspective in understanding AD pathogenesis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-4889
2041-4889
DOI:10.1038/s41419-021-04348-6