Noninvasive electromagnetic source imaging of spatiotemporally distributed epileptogenic brain sources

Brain networks are spatiotemporal phenomena that dynamically vary over time. Functional imaging approaches strive to noninvasively estimate these underlying processes. Here, we propose a novel source imaging approach that uses high-density EEG recordings to map brain networks. This approach objectiv...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 1946 - 15
Main Authors Sohrabpour, Abbas, Cai, Zhengxiang, Ye, Shuai, Brinkmann, Benjamin, Worrell, Gregory, He, Bin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.04.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Brain networks are spatiotemporal phenomena that dynamically vary over time. Functional imaging approaches strive to noninvasively estimate these underlying processes. Here, we propose a novel source imaging approach that uses high-density EEG recordings to map brain networks. This approach objectively addresses the long-standing limitations of conventional source imaging techniques, namely, difficulty in objectively estimating the spatial extent, as well as the temporal evolution of underlying brain sources. We validate our approach by directly comparing source imaging results with the intracranial EEG (iEEG) findings and surgical resection outcomes in a cohort of 36 patients with focal epilepsy. To this end, we analyzed a total of 1,027 spikes and 86 seizures. We demonstrate the capability of our approach in imaging both the location and spatial extent of brain networks from noninvasive electrophysiological measurements, specifically for ictal and interictal brain networks. Our approach is a powerful tool for noninvasively investigating large-scale dynamic brain networks. Noninvasive electromagnetic measurements are utilized effectively to estimate large scale dynamic brain networks. Sohrabpour et al. propose a novel electrophysiological source imaging approach to estimate the location and size of epileptogenic tissues in patients with epilepsy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-15781-0