Hollow-core conjoined-tube negative-curvature fibre with ultralow loss

Countering the optical network ‘capacity crunch’ calls for a radical development in optical fibres that could simultaneously minimize nonlinearity penalties, chromatic dispersion and maximize signal launch power. Hollow-core fibres (HCF) can break the nonlinear Shannon limit of solid-core fibre and...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 2828 - 6
Main Authors Gao, Shou-fei, Wang, Ying-ying, Ding, Wei, Jiang, Dong-liang, Gu, Shuai, Zhang, Xin, Wang, Pu
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.07.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Countering the optical network ‘capacity crunch’ calls for a radical development in optical fibres that could simultaneously minimize nonlinearity penalties, chromatic dispersion and maximize signal launch power. Hollow-core fibres (HCF) can break the nonlinear Shannon limit of solid-core fibre and fulfil all above requirements, but its optical performance need to be significantly upgraded before they can be considered for high-capacity telecommunication systems. Here, we report a new HCF with conjoined-tubes in the cladding and a negative-curvature core shape. It exhibits a minimum transmission loss of 2 dB km −1 at 1512 nm and a <16 dB km −1 bandwidth spanning across the O, E, S, C, L telecom bands (1302–1637 nm). The debut of this conjoined-tube HCF, with combined merits of ultralow loss, broad bandwidth, low bending loss, high mode quality and simple structure heralds a new opportunity to fully unleash the potential of HCF in telecommunication applications. Countering the optical network ‘capacity crunch’ requires developments in optical fibres. Here, the authors report a hollow-core fibre with conjoined tubes in the cladding and a negative-curvature core shape. It exhibits a transmission loss of 2 dB/km at 1512 nm and less than 16 dB/km bandwidth in the 1302–1637 nm range.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-05225-1