Root traits and belowground herbivores relate to plant–soil feedback variation among congeners
Plant–soil feedbacks contribute to vegetation dynamics by species-specific interactions between plants and soil biota. Variation in plant–soil feedbacks can be predicted by root traits, successional position, and plant nativeness. However, it is unknown whether closely related plant species develop...
Saved in:
Published in | Nature communications Vol. 10; no. 1; pp. 1564 - 9 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.04.2019
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Plant–soil feedbacks contribute to vegetation dynamics by species-specific interactions between plants and soil biota. Variation in plant–soil feedbacks can be predicted by root traits, successional position, and plant nativeness. However, it is unknown whether closely related plant species develop more similar plant–soil feedbacks than more distantly related species. Where previous comparisons included plant species from distant phylogenetic positions, we studied plant–soil feedbacks of congeneric species. Using eight intra-continentally range-expanding and native
Geranium
species, we tested relations between phylogenetic distances, chemical and structural root traits, root microbiomes, and plant–soil feedbacks. We show that root chemistry and specific root length better predict bacterial and fungal community composition than phylogenetic distance. Negative plant–soil feedback strength correlates with root-feeding nematode numbers, whereas microbiome dissimilarity, nativeness, or phylogeny does not predict plant–soil feedbacks. We conclude that root microbiome variation among congeners is best explained by root traits, and that root-feeding nematode abundances predict plant–soil feedbacks.
Most studies of plant–soil feedbacks and associated traits look at remotely-related species. Here the authors look at congeners, and show that nematode-driven plant–soil feedbacks depend on root chemical and morphological traits, independent of phylogenetic distance. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-019-09615-x |