A prenucleation strategy for ambient fabrication of perovskite solar cells with high device performance uniformity
Humidity is known to be inimical to the halide perovskites and thus typically avoided during fabrication. The poor fundamental understanding of chemical interactions between water and the precursors hampers the further development of perovskite fabrication in ambient atmosphere. Here, we disclose a...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 1006 - 11 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.02.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Humidity is known to be inimical to the halide perovskites and thus typically avoided during fabrication. The poor fundamental understanding of chemical interactions between water and the precursors hampers the further development of perovskite fabrication in ambient atmosphere. Here, we disclose a key finding that the ambient water could promote the formation of lead complexes, which when uncontrolled would make their way into large intermediate fibrillar crystallites and thus discontinuous perovskite films unfavorable for photovoltaics among others. To counter this effect, a prenucleation strategy is proposed, which embodies the controlled burst of profuse intermediate nuclei. Consequently, we are able to obtain a compact and uniform perovskite layer, which affords high efficiency perovskite solar cells. More excitingly, the solar cells show high performance uniformity, demonstrating the distinctive advantages of our prenucleation strategy. This work sheds light on developing reliable and cost-effective fabrication methods for industrial production of perovskite solar cells.
Ambient processing of perovskite solar cells is desired but the resulting cell performance is poor due to the negative effects of moisture on film fabrication. Here Zhang et al. propose a prenucleation strategy to overcome the moisture effect, achieving good film quality and high and uniform cell performance. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-020-14715-0 |