Observing atomic layer electrodeposition on single nanocrystals surface by dark field spectroscopy
Underpotential deposition offers a predominant way to tailor the electronic structure of the catalytic surface at the atomic level, which is key to engineering materials with a high activity for (electro)catalysis. However, it remains challenging to precisely control and directly probe the underpote...
Saved in:
Published in | Nature communications Vol. 11; no. 1; p. 2518 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.05.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Underpotential deposition offers a predominant way to tailor the electronic structure of the catalytic surface at the atomic level, which is key to engineering materials with a high activity for (electro)catalysis. However, it remains challenging to precisely control and directly probe the underpotential deposition of a (sub)monolayer of atoms on nanoparticle surfaces. In this work, we in situ observe silver electrodeposited on gold nanocrystals surface from sub-monolayer to one monolayer by designing a highly sensitive electrochemical dark field scattering setup. The spectral variation is used to reconstruct the optical “cyclic voltammogram” of every single nanocrystal for understanding the underpotential deposition process on nanocrystals, which cannot be achieved by any other methods but are essential for creating novel nanomaterials.
Underpotential deposition (UPD) is important to modify the surface properties of nanocrystals. Here, the authors show the application of in situ electrochemical dark field spectroscopy in identifying the UPD processes of silver on different facets of gold nanocrystals at the single nanoparticle level. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-020-16405-3 |