Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity

Stimulated Raman scattering (SRS) microscopy allows for high-speed label-free chemical imaging of biomedical systems. The imaging sensitivity of SRS microscopy is limited to ~10 mM for endogenous biomolecules. Electronic pre-resonant SRS allows detection of sub-micromolar chromophores. However, labe...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 5318 - 11
Main Authors Zong, Cheng, Premasiri, Ranjith, Lin, Haonan, Huang, Yimin, Zhang, Chi, Yang, Chen, Ren, Bin, Ziegler, Lawrence D., Cheng, Ji-Xin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.11.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Stimulated Raman scattering (SRS) microscopy allows for high-speed label-free chemical imaging of biomedical systems. The imaging sensitivity of SRS microscopy is limited to ~10 mM for endogenous biomolecules. Electronic pre-resonant SRS allows detection of sub-micromolar chromophores. However, label-free SRS detection of single biomolecules having extremely small Raman cross-sections (~10 −30  cm 2 sr −1 ) remains unreachable. Here, we demonstrate plasmon-enhanced stimulated Raman scattering (PESRS) microscopy with single-molecule detection sensitivity. Incorporating pico-Joule laser excitation, background subtraction, and a denoising algorithm, we obtain robust single-pixel SRS spectra exhibiting single-molecule events, verified by using two isotopologues of adenine and further confirmed by digital blinking and bleaching in the temporal domain. To demonstrate the capability of PESRS for biological applications, we utilize PESRS to map adenine released from bacteria due to starvation stress. PESRS microscopy holds the promise for ultrasensitive detection and rapid mapping of molecular events in chemical and biomedical systems. Stimulated Raman scattering (SRS) microscopy enables label-free chemical imaging at high speed, but has been limited by low sensitivity. Here, the authors demonstrate plasmon-enhanced SRS microscopy and achieve single molecule detection sensitivity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-13230-1