The relative contribution of target-site mutations in complex acaricide resistant phenotypes as assessed by marker assisted backcrossing in Tetranychus urticae
The mechanisms underlying insecticide and acaricide resistance in insects and mites are often complex, including additive effects of target-site insensitivity, increased metabolism and transport. The extent to which target-site resistance mutations contribute to the resistance phenotype is, however,...
Saved in:
Published in | Scientific reports Vol. 7; no. 1; pp. 9202 - 12 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.08.2017
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The mechanisms underlying insecticide and acaricide resistance in insects and mites are often complex, including additive effects of target-site insensitivity, increased metabolism and transport. The extent to which target-site resistance mutations contribute to the resistance phenotype is, however, not well studied. Here, we used marker-assisted backcrossing to create 30 congenic lines carrying nine mutations (alone, or in combination in a few cases) associated with resistance to avermectins, pyrethroids, mite growth inhibitors and mitochondrial complex III inhibitors (QoI) in a polyphagous arthropod pest, the spider mite
Tetranychus urticae
. Toxicity tests revealed that mutations in the voltage-gated sodium channel, chitin synthase 1 and cytochrome b confer high levels of resistance and, when fixed in a population, these mutations alone can result in field failure of acaricide treatment. In contrast, although we confirmed the implication of mutations in glutamate-gated chloride channels in abamectin and milbemectin insensitivity, these mutations do not lead to the high resistance levels that are often reported in abamectin resistant strains of
T. urticae
. Overall, this study functionally validates reported target-site resistance mutations in
T. urticae
, by uncoupling them from additional mechanisms, allowing to finally investigate the strength of the conferred phenotype
in vivo
. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-017-09054-y |