Early prediction of diagnostic-related groups and estimation of hospital cost by processing clinical notes

As healthcare providers receive fixed amounts of reimbursement for given services under DRG (Diagnosis-Related Groups) payment, DRG codes are valuable for cost monitoring and resource allocation. However, coding is typically performed retrospectively post-discharge. We seek to predict DRGs and DRG-b...

Full description

Saved in:
Bibliographic Details
Published inNPJ digital medicine Vol. 4; no. 1; pp. 103 - 8
Main Authors Liu, Jinghui, Capurro, Daniel, Nguyen, Anthony, Verspoor, Karin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As healthcare providers receive fixed amounts of reimbursement for given services under DRG (Diagnosis-Related Groups) payment, DRG codes are valuable for cost monitoring and resource allocation. However, coding is typically performed retrospectively post-discharge. We seek to predict DRGs and DRG-based case mix index (CMI) at early inpatient admission using routine clinical text to estimate hospital cost in an acute setting. We examined a deep learning-based natural language processing (NLP) model to automatically predict per-episode DRGs and corresponding cost-reflecting weights on two cohorts (paid under Medicare Severity (MS) DRG or All Patient Refined (APR) DRG), without human coding efforts. It achieved macro-averaged area under the receiver operating characteristic curve (AUC) scores of 0·871 (SD 0·011) on MS-DRG and 0·884 (0·003) on APR-DRG in fivefold cross-validation experiments on the first day of ICU admission. When extended to simulated patient populations to estimate average cost-reflecting weights, the model increased its accuracy over time and obtained absolute CMI error of 2·40 (1·07%) and 12·79% (2·31%), respectively on the first day. As the model could adapt to variations in admission time, cohort size, and requires no extra manual coding efforts, it shows potential to help estimating costs for active patients to support better operational decision-making in hospitals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2398-6352
2398-6352
DOI:10.1038/s41746-021-00474-9