Molecular signatures of aneuploidy-driven adaptive evolution

Alteration of normal ploidy (aneuploidy) can have a number of opposing effects, such as unbalancing protein abundances and inhibiting cell growth but also accelerating genetic diversification and rapid adaptation. The interplay of these detrimental and beneficial effects remains puzzling. Here, to u...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 588 - 14
Main Authors Kaya, Alaattin, Mariotti, Marco, Tyshkovskiy, Alexander, Zhou, Xuming, Hulke, Michelle L., Ma, Siming, Gerashchenko, Maxim V., Koren, Amnon, Gladyshev, Vadim N.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 30.01.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Alteration of normal ploidy (aneuploidy) can have a number of opposing effects, such as unbalancing protein abundances and inhibiting cell growth but also accelerating genetic diversification and rapid adaptation. The interplay of these detrimental and beneficial effects remains puzzling. Here, to understand how cells develop tolerance to aneuploidy, we subject disomic (i.e. with an extra chromosome copy) strains of yeast to long-term experimental evolution under strong selection, by forcing disomy maintenance and daily population dilution. We characterize mutations, karyotype alterations and gene expression changes, and dissect the associated molecular strategies. Cells with different extra chromosomes accumulated mutations at distinct rates and displayed diverse adaptive events. They tended to evolve towards normal ploidy through chromosomal DNA loss and gene expression changes. We identify genes with recurrent mutations and altered expression in multiple lines, revealing a variant that improves growth under genotoxic stresses. These findings support rapid evolvability of disomic strains that can be used to characterize fitness effects of mutations under different stress conditions. Aneuploidy (abnormal chromosome number) can enable rapid adaptation to stress conditions, but it also entails fitness costs from gene imbalance. Here, the authors experimentally evolve yeast while forcing maintenance of aneuploidy to identify the mechanisms that promote tolerance of aneuploidy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-13669-2