A flexible electromagnetic wave-electricity harvester

Developing an ultimate electromagnetic (EM)-absorbing material that can not only dissipate EM energy but also convert the generated heat into electricity is highly desired but remains a significant challenge. Here, we report a hybrid Sn@C composite with a biological cell-like splitting ability to ad...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 834 - 8
Main Authors Lv, Hualiang, Yang, Zhihong, Liu, Bo, Wu, Guanglei, Lou, Zhichao, Fei, Ben, Wu, Renbing
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.02.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Developing an ultimate electromagnetic (EM)-absorbing material that can not only dissipate EM energy but also convert the generated heat into electricity is highly desired but remains a significant challenge. Here, we report a hybrid Sn@C composite with a biological cell-like splitting ability to address this challenge. The composite consisting of Sn nanoparticles embedded within porous carbon would split under a cycled annealing treatment, leading to more dispersed nanoparticles with an ultrasmall size. Benefiting from an electron-transmitting but a phonon-blocking structure created by the splitting behavior, an EM wave-electricity device constructed by the optimum Sn@C composite could achieve an efficiency of EM to heat at widely used frequency region and a maximum thermoelectric figure of merit of 0.62 at 473 K, as well as a constant output voltage and power under the condition of microwave radiation. This work provides a promising solution for solving EM interference with self-powered EM devices. Materials that can harvest electromagnetic (EM) waves and harness the resulting energy would have many applications. Here, the authors present a hybrid composite that produces thermoelectricity from the heating in the EM absorption under microwave radiation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-21103-9