Topological band structure via twisted photons in a degenerate cavity

Synthetic dimensions based on particles’ internal degrees of freedom, such as frequency, spatial modes and arrival time, have attracted significant attention. They offer ideal large-scale lattices to simulate nontrivial topological phenomena. Exploring more synthetic dimensions is one of the paths t...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 2040 - 7
Main Authors Yang, Mu, Zhang, Hao-Qing, Liao, Yu-Wei, Liu, Zheng-Hao, Zhou, Zheng-Wei, Zhou, Xing-Xiang, Xu, Jin-Shi, Han, Yong-Jian, Li, Chuan-Feng, Guo, Guang-Can
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.04.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Synthetic dimensions based on particles’ internal degrees of freedom, such as frequency, spatial modes and arrival time, have attracted significant attention. They offer ideal large-scale lattices to simulate nontrivial topological phenomena. Exploring more synthetic dimensions is one of the paths toward higher dimensional physics. In this work, we design and experimentally control the coupling among synthetic dimensions consisting of the intrinsic photonic orbital angular momentum and spin angular momentum degrees of freedom in a degenerate optical resonant cavity, which generates a periodically driven spin-orbital coupling system. We directly characterize the system’s properties, including the density of states, energy band structures and topological windings, through the transmission intensity measurements. Our work demonstrates a mechanism for exploring the spatial modes of twisted photons as the synthetic dimension, which paves the way to design rich topological physics in a highly compact platform. Tailoring topological physics in optical cavity is a challenge that would allow new possibilities for the design optical components. In this paper, the authors, harnessing the potential of synthetic dimensions, experimentally demonstrate a degenerate cavity containing many optical angular momenta.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-29779-3