Gαq activation modulates autophagy by promoting mTORC1 signaling

The mTORC1 node plays a major role in autophagy modulation. We report a role of the ubiquitous Gαq subunit, a known transducer of plasma membrane G protein-coupled receptors signaling, as a core modulator of mTORC1 and autophagy. Cells lacking Gαq/11 display higher basal autophagy, enhanced autophag...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 4540 - 19
Main Authors Cabezudo, Sofía, Sanz-Flores, Maria, Caballero, Alvaro, Tasset, Inmaculada, Rebollo, Elena, Diaz, Antonio, Aragay, Anna M., Cuervo, Ana María, Mayor, Federico, Ribas, Catalina
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.07.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The mTORC1 node plays a major role in autophagy modulation. We report a role of the ubiquitous Gαq subunit, a known transducer of plasma membrane G protein-coupled receptors signaling, as a core modulator of mTORC1 and autophagy. Cells lacking Gαq/11 display higher basal autophagy, enhanced autophagy induction upon different types of nutrient stress along with a decreased mTORC1 activation status. They are also unable to reactivate mTORC1 and thus inactivate ongoing autophagy upon nutrient recovery. Conversely, stimulation of Gαq/11 promotes sustained mTORC1 pathway activation and reversion of autophagy promoted by serum or amino acids removal. Gαq is present in autophagic compartments and lysosomes and is part of the mTORC1 multi-molecular complex, contributing to its assembly and activation via its nutrient status-sensitive interaction with p62, which displays features of a Gαq effector. Gαq emerges as a central regulator of the autophagy machinery required to maintain cellular homeostasis upon nutrient fluctuations. Nutrient status in the cell regulates autophagy via mTORC1 activity. Here, the authors show that the ubiquitous G protein subunit Gαq contributes to nutrient sensing by promoting formation of an mTOR-p62-Raptor complex in replete conditions, modulating autophagy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-24811-4