Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors

Designing electrodes in a highly ordered structure simultaneously with appropriate orientation, outstanding mechanical robustness, and high electrical conductivity to achieve excellent electrochemical performance remains a daunting challenge. Inspired by the phenomenon in nature that leaves signific...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 790 - 11
Main Authors Xiong, Guoping, He, Pingge, Lyu, Zhipeng, Chen, Tengfei, Huang, Boyun, Chen, Lei, Fisher, Timothy S.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.02.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Designing electrodes in a highly ordered structure simultaneously with appropriate orientation, outstanding mechanical robustness, and high electrical conductivity to achieve excellent electrochemical performance remains a daunting challenge. Inspired by the phenomenon in nature that leaves significantly increase exposed tree surface area to absorb carbon dioxide (like ions) from the environments (like electrolyte) for photosynthesis, we report a design of micro-conduits in a bioinspired leaves-on-branchlet structure consisting of carbon nanotube arrays serving as branchlets and graphene petals as leaves for such electrodes. The hierarchical all-carbon micro-conduit electrodes with hollow channels exhibit high areal capacitance of 2.35 F cm −2 (~500 F g −1 based on active material mass), high rate capability and outstanding cyclic stability (capacitance retention of ~95% over 10,000 cycles). Furthermore, Nernst–Planck–Poisson calculations elucidate the underlying mechanism of charge transfer and storage governed by sharp graphene petal edges, and thus provides insights into their outstanding electrochemical performance. One way to improve the performance of supercapacitors is to use hybrid carbon nanomaterials. Here the authors show a bioinspired electrode design with graphene petals and carbon nanotube arrays serving as leaves and branchlets, respectively. The structure affords excellent electrochemical characteristics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-03112-3