Oxygen-dependent proteolysis regulates the stability of angiosperm polycomb repressive complex 2 subunit VERNALIZATION 2

The polycomb repressive complex 2 (PRC2) regulates epigenetic gene repression in eukaryotes. Mechanisms controlling its developmental specificity and signal-responsiveness are poorly understood. Here, we identify an oxygen-sensitive N-terminal (N-) degron in the plant PRC2 subunit VERNALIZATION(VRN)...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 5438 - 11
Main Authors Gibbs, Daniel J., Tedds, Hannah M., Labandera, Anne-Marie, Bailey, Mark, White, Mark D., Hartman, Sjon, Sprigg, Colleen, Mogg, Sophie L., Osborne, Rory, Dambire, Charlene, Boeckx, Tinne, Paling, Zachary, Voesenek, Laurentius A. C. J., Flashman, Emily, Holdsworth, Michael J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.12.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The polycomb repressive complex 2 (PRC2) regulates epigenetic gene repression in eukaryotes. Mechanisms controlling its developmental specificity and signal-responsiveness are poorly understood. Here, we identify an oxygen-sensitive N-terminal (N-) degron in the plant PRC2 subunit VERNALIZATION(VRN) 2, a homolog of animal Su(z)12, that promotes its degradation via the N-end rule pathway. We provide evidence that this N-degron arose early during angiosperm evolution via gene duplication and N-terminal truncation, facilitating expansion of PRC2 function in flowering plants. We show that proteolysis via the N-end rule pathway prevents ectopic VRN2 accumulation, and that hypoxia and long-term cold exposure lead to increased VRN2 abundance, which we propose may be due to inhibition of VRN2 turnover via its N-degron. Furthermore, we identify an overlap in the transcriptional responses to hypoxia and prolonged cold, and show that VRN2 promotes tolerance to hypoxia. Our work reveals a mechanism for post-translational regulation of VRN2 stability that could potentially link environmental inputs to the epigenetic control of plant development. VRN2 is a Polycomb Repressive Complex 2 subunit, best known as a regulator of vernalization that accumulates during prolonged cold. Here Gibbs et al . show that VRN2 is degraded via the N-end rule pathway, which  prevents ectopic accumulation of VRN2 in the absence of appropriate environmental stimuli.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-07875-7