Species diversity and food web structure jointly shape natural biological control in agricultural landscapes

Land-use change and agricultural intensification concurrently impact natural enemy (e.g., parasitoid) communities and their associated ecosystem services (ESs), i.e., biological pest control. However, the extent to which (on-farm) parasitoid diversity and food webs mediate landscape-level influences...

Full description

Saved in:
Bibliographic Details
Published inCommunications biology Vol. 4; no. 1; pp. 979 - 11
Main Authors Yang, Fan, Liu, Bing, Zhu, Yulin, Wyckhuys, Kris A. G., van der Werf, Wopke, Lu, Yanhui
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.08.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Land-use change and agricultural intensification concurrently impact natural enemy (e.g., parasitoid) communities and their associated ecosystem services (ESs), i.e., biological pest control. However, the extent to which (on-farm) parasitoid diversity and food webs mediate landscape-level influences on biological control remains poorly understood. Here, drawing upon a 3-year study of quantitative parasitoid-hyperparasitoid trophic networks from 25 different agro-landscapes, we assess the cascading effects of landscape composition, species diversity and trophic network structure on ecosystem functionality (i.e., parasitism, hyperparasitism). Path analysis further reveals cascaded effects leading to biological control of a resident crop pest, i.e., Aphis gossypii . Functionality is dictated by (hyper)parasitoid diversity, with its effects modulated by food web generality and vulnerability. Non-crop habitat cover directly benefits biological control, whereas secondary crop cover indirectly lowers hyperparasitism. Our work underscores a need to simultaneously account for on-farm biodiversity and trophic interactions when investigating ESs within dynamic agro-landscapes. Yang, Liu, Zhu et al. analyzed a dataset of 3-year parasitoid-hyperparasitoid trophic networks from 25 different agro-landscapes. Using path analysis, they uncover how species diversity and food web structure shape ecosystem functionality.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-021-02509-z