Basal freeze-on generates complex ice-sheet stratigraphy

Large, plume-like internal ice-layer-structures have been observed in radar images from both Antarctica and Greenland, rising from the ice-sheet base to up to half of the ice thickness. Their origins are not yet understood. Here, we simulate their genesis by basal freeze-on using numerical ice-flow...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 4669 - 13
Main Authors Leysinger Vieli, G. J.-M. C., Martín, C., Hindmarsh, R. C. A., Lüthi, M. P.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.11.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Large, plume-like internal ice-layer-structures have been observed in radar images from both Antarctica and Greenland, rising from the ice-sheet base to up to half of the ice thickness. Their origins are not yet understood. Here, we simulate their genesis by basal freeze-on using numerical ice-flow modelling and analyse the transient evolution of the emerging ice-plume and the surrounding ice-layer structure as a function of both freeze-on rate and ice flux. We find good agreement between radar observations, modelled ice-plume geometry and internal layer structure, and further show that plume height relates primarily to ice-flux and only secondarily to freeze-on. An in-depth analysis, performed for Northern Greenland of observed spatial plume distribution related to ice flow, basal topography and water availability supports our findings regarding ice flux and suggests freeze-on is controlled by ascending subglacial water flow. Our results imply that widespread basal freeze-on strongly affects ice stratigraphy and consequently ice-core interpretations. Subsurface ice-sheet radar images reveal large plume-shaped bodies rising from the base, with their origin not yet understood. Here, the authors show that freeze-on of water at the ice-sheet base combined with ice-flux explains the vertical extent, shape and structure of the observed plumes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-07083-3