Non-covalent Fc-Fab interactions significantly alter internal dynamics of an IgG1 antibody
The fragment-antigen-binding arms (Fab1 and Fab2) in a canonical immunoglobulin G (IgG) molecule have identical sequences and hence are always expected to exhibit symmetric conformations and dynamics. Using long all atom molecular simulations of a human IgG1 crystal structure 1HZH, we demonstrate th...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; p. 9321 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
04.06.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The fragment-antigen-binding arms (Fab1 and Fab2) in a canonical immunoglobulin G (IgG) molecule have identical sequences and hence are always expected to exhibit symmetric conformations and dynamics. Using long all atom molecular simulations of a human IgG1 crystal structure 1HZH, we demonstrate that the translational and rotational dynamics of Fab1 and Fab2 also strongly depend on their interactions with each other and with the fragment-crystallizable (Fc) region. We show that the Fab2 arm in the 1HZH structure is non-covalently bound to the Fc region via long-lived hydrogen bonds, involving its light chain and both heavy chains of the Fc region. These highly stable interactions stabilize non-trivial conformer states with constrained fluctuations. We observe subtle modifications in Fab1 dynamics in response to Fab2-Fc interactions that points to novel allosteric interactions between the Fab arms. These results yield novel insights into the inter- and intra-fragment motions of immunoglobulins which could help us better understand the relation between their structure and function. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-13370-3 |