Efficient Laser-Driven Proton Acceleration from a Cryogenic Solid Hydrogen Target

We report on the successful implementation and characterization of a cryogenic solid hydrogen target in experiments on high-power laser-driven proton acceleration. When irradiating a solid hydrogen filament of 10 μm diameter with 10-Terawatt laser pulses of 2.5 J energy, protons with kinetic energie...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 9; no. 1; pp. 16534 - 8
Main Authors Polz, J., Robinson, A. P. L., Kalinin, A., Becker, G. A., Fraga, R. A. Costa, Hellwing, M., Hornung, M., Keppler, S., Kessler, A., Klöpfel, D., Liebetrau, H., Schorcht, F., Hein, J., Zepf, M., Grisenti, R. E., Kaluza, M. C.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.11.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report on the successful implementation and characterization of a cryogenic solid hydrogen target in experiments on high-power laser-driven proton acceleration. When irradiating a solid hydrogen filament of 10 μm diameter with 10-Terawatt laser pulses of 2.5 J energy, protons with kinetic energies in excess of 20 MeV exhibiting non-thermal features in their spectrum were observed. The protons were emitted into a large solid angle reaching a total conversion efficiency of several percent. Two-dimensional particle-in-cell simulations confirm our results indicating that the spectral modulations are caused by collisionless shocks launched from the surface of the the high-density filament into a low-density corona surrounding the target. The use of solid hydrogen targets may significantly improve the prospects of laser-accelerated proton pulses for future applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-52919-7