Dual mechanism β-amino acid polymers promoting cell adhesion

Cell adhesion has tremendous impact on the function of culture platforms and implants. Cell-adhesive proteins and peptides have been extensively used for decades to promote cell adhesion, however, their application suffers from their easy enzymatic degradation, difficulty in large-scale preparation...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 562 - 13
Main Authors Chen, Qi, Zhang, Donghui, Zhang, Wenjing, Zhang, Haodong, Zou, Jingcheng, Chen, Mingjiao, Li, Jin, Yuan, Yuan, Liu, Runhui
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.01.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cell adhesion has tremendous impact on the function of culture platforms and implants. Cell-adhesive proteins and peptides have been extensively used for decades to promote cell adhesion, however, their application suffers from their easy enzymatic degradation, difficulty in large-scale preparation and expensiveness. To develop the next-generation cell-adhesive materials, we mimic the cell adhesion functions and mechanisms of RGD and KRSR peptides and design cell-adhesive cationic-hydrophobic amphiphilic β-amino acid polymers that are stable upon proteolysis and easily prepared in large scale at low cost. The optimal polymer strongly promotes cell adhesion, using preosteoblast cell as a model, by following dual mechanisms that are independent of sequence and chirality of the statistic copolymer. Our strategy opens avenues in designing the next-generation cell-adhesive materials and may guide future studies and applications. Cell adhesion peptides like RGD are important to biomedical applications but suffer from proteolysis as well as processing and cost issues. Here, the authors report on the development of cationic-hydrophobic amphiphilic β-amino acid polymers which function as cell adhesion motifs but are resistant to proteolysis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-20858-x