A cortical immune network map identifies distinct microglial transcriptional programs associated with β-amyloid and Tau pathologies
Microglial dysfunction has been proposed as one of the many cellular mechanisms that can contribute to the development of Alzheimer’s disease (AD). Here, using a transcriptional network map of the human frontal cortex, we identify five modules of co-expressed genes related to microglia and assess th...
Saved in:
Published in | Translational psychiatry Vol. 11; no. 1; pp. 50 - 17 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.01.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Microglial dysfunction has been proposed as one of the many cellular mechanisms that can contribute to the development of Alzheimer’s disease (AD). Here, using a transcriptional network map of the human frontal cortex, we identify five modules of co-expressed genes related to microglia and assess their role in the neuropathologic features of AD in 540 subjects from two cohort studies of brain aging. Two of these transcriptional programs—modules 113 and 114—relate to the accumulation of β-amyloid, while module 5 relates to tau pathology. We replicate these associations in brain epigenomic data and in two independent datasets. In terms of tau, we propose that module 5, a marker of activated microglia, may lead to tau accumulation and subsequent cognitive decline. We validate our model further by showing that three representative module 5 genes (
ACADVL, TRABD
, and
VASP
) encode proteins that are upregulated in activated microglia in AD. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2158-3188 2158-3188 |
DOI: | 10.1038/s41398-020-01175-9 |