Activation of anaplastic lymphoma kinase is responsible for hyperphosphorylation of ShcC in neuroblastoma cell lines

Shc family of docking proteins, ShcA, ShcB and ShcC, play roles in cellular signal transduction by binding to phosphotyrosine residues of various activated receptor tyrosine kinases. Both ShcB and ShcC proteins are selectively expressed in the neural system of adult mouse tissues. In most of neurobl...

Full description

Saved in:
Bibliographic Details
Published inOncogene Vol. 21; no. 38; pp. 5823 - 5834
Main Authors MIYAKE, Izumi, HAKOMORI, Yuko, SHINOHARA, Azusa, GAMOU, Toshie, SAITO, Masaki, IWAMATSU, Akihiro, SAKAI, Ryuichi
Format Journal Article
LanguageEnglish
Published Basingstoke Nature Publishing 29.08.2002
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Shc family of docking proteins, ShcA, ShcB and ShcC, play roles in cellular signal transduction by binding to phosphotyrosine residues of various activated receptor tyrosine kinases. Both ShcB and ShcC proteins are selectively expressed in the neural system of adult mouse tissues. In most of neuroblastoma cells, obvious tyrosine phosphorylation of ShcC was observed, whereas expression of ShcB was considerably low. Phosphoproteins associated with hyperphosphorylated ShcC were purified from neuroblastoma cell lines, and identified by mass-spectrometry. Anaplastic lymphoma kinase (ALK), which turned out to be one of these phosphoproteins, was constitutively activated and associated with the PTB domain of ShcC in three neuroblastoma cells. In vitro kinase assay revealed that ShcC is a potent substrate of the activated ALK kinase. The ALK gene locus was significantly amplified in both of these cell lines, suggesting that gene amplification leads to constitutive activation of the ALK kinase, which results in hyperphosphorylation of ShcC. Constitutive activation of ALK appeared to interfere with signals from other receptor tyrosine kinases. ALK-ShcC signal activation, possibly caused by co-amplification with the N-myc gene, might give additional effects on malignant tumor progression of neuroblastoma.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0950-9232
1476-5594
DOI:10.1038/sj.onc.1205735