Chemical composition of the Orion nebula derived from echelle spectrophotometry

We present echelle spectroscopy in the 3500- to 7060-Å range for two positions of the Orion nebula. The data were obtained using the 2.1-m telescope at Observatorio Astronómico Nacional in San Pedro Mártir, Baja California. We have measured the intensities of about 220 emission lines, in particular...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 295; no. 2; pp. 401 - 422
Main Authors Esteban, C., Peimbert, M., Torres-Peimbert, S., Escalante, V.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.04.1998
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present echelle spectroscopy in the 3500- to 7060-Å range for two positions of the Orion nebula. The data were obtained using the 2.1-m telescope at Observatorio Astronómico Nacional in San Pedro Mártir, Baja California. We have measured the intensities of about 220 emission lines, in particular 81 permitted lines of C+, N+, N++, O0, O+, Ne0, Si+, Si++ and S+, some of them produced by recombination only and others mainly by fluorescence. We have determined electron temperatures, electron densities and ionic abundances using different continuum and line intensity ratios. We derived the He, C and O abundances from recombination lines and find that the C/H and O/H values are very similar to those derived from B stars of the Orion association, and that these nebular values are independent of the temperature structure. We have also derived abundances from collisionally excited lines. These abundances depend on the temperature structure; accurate t2 values have been derived comparing the O II recombination lines with the [O III] collisionally excited lines. The gaseous abundances of Mg, Si and Fe show significant depletions, implying that a substantial fraction of these atoms is tied up in dust grains. The derived depletions are similar to those found in warm clouds of the Galactic disc, but are not as large as those found in cold clouds. A comparison of the solar and Orion chemical abundances is made.
Bibliography:ark:/67375/HXZ-S8J6HKQ9-C
istex:F49A2E5D922E367CC20D610796272DD2B75CD03E
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0035-8711
1365-2966
DOI:10.1046/j.1365-8711.1998.01335.x