Changes in Intracellular Chloride after Oxygen-Glucose Deprivation of the Adult Hippocampal Slice: Effect of Diazepam
Ischemic injury to the CNS results in loss of ionic homeostasis and the development of neuronal death. An increase in intracellular Ca2+ is well established, but there are few studies of changes in intracellular Cl- ([Cl-]i) after ischemia. We used an in vitro model of cerebral ischemia (oxygen-gluc...
Saved in:
Published in | The Journal of neuroscience Vol. 24; no. 18; pp. 4478 - 4488 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
05.05.2004
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Ischemic injury to the CNS results in loss of ionic homeostasis and the development of neuronal death. An increase in intracellular Ca2+ is well established, but there are few studies of changes in intracellular Cl- ([Cl-]i) after ischemia. We used an in vitro model of cerebral ischemia (oxygen-glucose deprivation) to examine changes in [Cl-]i and GABA(A) receptor-mediated responses in hippocampal slices from adult rats. Changes in [Cl-]i were measured in area CA1 pyramidal neurons using optical imaging of 6-methoxy-N-ethylquinolinium chloride, a Cl--sensitive fluorescent indicator. Oxygen-glucose deprivation induced an immediate rise in [Cl-]i, which recovered within 20 min. A second and more prolonged rise in [Cl-]i occurred within the next hour, during which postsynaptic field potentials failed to recover. The sustained increase in [Cl-]i was not blocked by GABA(A) receptor antagonists. However, oxygen-glucose deprivation caused a progressive downregulation of the K+-Cl- cotransporter (KCC2), which may have contributed to the Cl- accumulation. The rise in [Cl-]i was accompanied by an inability of the GABA(A) agonist muscimol to cause Cl- influx. In vivo, diazepam is neuroprotective when given early after ischemia, although the mechanism by which this occurs is not well understood. Here, we added diazepam early after oxygen-glucose deprivation and prevented the downregulation of KCC2 and the accumulation of [Cl-]i. Consequently, both GABA(A) responses and synaptic transmission within the hippocampus were restored. Thus, after oxygen-glucose deprivation, diazepam may decrease neuronal excitability, thereby reducing the energy demands of the neuron. This may prevent the activation of downstream cell death mechanisms and restore Cl- homeostasis and neuronal function |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0270-6474 1529-2401 1529-2401 |
DOI: | 10.1523/JNEUROSCI.0755-04.2004 |