Network Context and Selection in the Evolution to Enzyme Specificity

Enzymes are thought to have evolved highly specific catalytic activities from promiscuous ancestral proteins. By analyzing a genome-scale model of Escherichia coli metabolism, we found that 37% of its enzymes act on a variety of substrates and catalyze 65% of the known metabolic reactions. However,...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 337; no. 6098; pp. 1101 - 1104
Main Authors Nam, Hojung, Lewis, Nathan E., Lerman, Joshua A., Lee, Dae-Hee, Chang, Roger L., Kim, Donghyuk, Palsson, Bernhard O.
Format Journal Article
LanguageEnglish
Published Washington, DC American Association for the Advancement of Science 31.08.2012
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Enzymes are thought to have evolved highly specific catalytic activities from promiscuous ancestral proteins. By analyzing a genome-scale model of Escherichia coli metabolism, we found that 37% of its enzymes act on a variety of substrates and catalyze 65% of the known metabolic reactions. However, it is not apparent why these generalist enzymes remain. Here, we show that there are marked differences between generalist enzymes anf specialist enzymes, known to catalyze a single chemical reaction on one particular substrate in vivo. Specialist enzymes (i) are frequently essential, (ii) maintain higher metabolic flux, and (iii) require more regulation of enzyme activity to control metabolic flux in dynamic environments than do generalist enzymes. Furthermore, these properties are conserved in Archaea and Eukarya. Thus, the metabolic network context and environmental conditions influence enzyme evolution toward high specificity.
AbstractList Enzymes are thought to have evolved highly specific catalytic activities from promiscuous ancestral proteins. By analyzing a genome-scale model of Escherichia coli metabolism, we found that 37% of its enzymes act on a variety of substrates and catalyze 65% of the known metabolic reactions. However, it is not apparent why these generalist enzymes remain. Here, we show that there are marked differences between generalist enzymes and specialist enzymes, known to catalyze a single chemical reaction on one particular substrate in vivo. Specialist enzymes (i) are frequently essential, (ii) maintain higher metabolic flux, and (iii) require more regulation of enzyme activity to control metabolic flux in dynamic environments than do generalist enzymes. Furthermore, these properties are conserved in Archaea and Eukarya. Thus, the metabolic network context and environmental conditions influence enzyme evolution toward high specificity.
Enzymes are thought to have evolved highly specific catalytic activities from promiscuous ancestral proteins. By analyzing a genome-scale model of Escherichia coli metabolism, we found that 37% of its enzymes act on a variety of substrates and catalyze 65% of the known metabolic reactions. However, it is not apparent why these generalist enzymes remain. Here, we show that there are marked differences between generalist enzymes anf specialist enzymes, known to catalyze a single chemical reaction on one particular substrate in vivo. Specialist enzymes (i) are frequently essential, (ii) maintain higher metabolic flux, and (iii) require more regulation of enzyme activity to control metabolic flux in dynamic environments than do generalist enzymes. Furthermore, these properties are conserved in Archaea and Eukarya. Thus, the metabolic network context and environmental conditions influence enzyme evolution toward high specificity.
Enzymes are thought to have evolved highly specific catalytic activities from promiscuous ancestral proteins. By analyzing a genome-scale model of Escherichia coli metabolism, we found that 37% of its enzymes act on a variety of substrates and catalyze 65% of the known metabolic reactions. However, it is not apparent why these generalist enzymes remain. Here, we show that there are marked differences between generalist enzymes and specialist enzymes, known to catalyze a single chemical reaction on one particular substrate in vivo. Specialist enzymes (i) are frequently essential, (ii) maintain higher metabolic flux, and (iii) require more regulation of enzyme activity to control metabolic flux in dynamic environments than do generalist enzymes. Furthermore, these properties are conserved in Archaea and Eukarya. Thus, the metabolic network context and environmental conditions influence enzyme evolution toward high specificity.
Good Enough Can Be Good Enough To begin to understand why some enzymes are promiscuous and have many substrates, whereas others are highly specific, and why some have high activity, whereas others appear not to be optimized, Nam et al. (p. 1101 ) analyzed metabolic networks in bacteria. Specialist enzymes are essential for life, catalyze a high flux of enzymatic activity, and are more highly regulated. However, not all enzymes appear to be on a track of gradual improvement of specificity and efficiency. Generalist enzymes seem to well serve their own purposes, and their optimization may not justify the evolutionary cost. Are less promiscuous enzymes more highly evolved? Enzymes are thought to have evolved highly specific catalytic activities from promiscuous ancestral proteins. By analyzing a genome-scale model of Escherichia coli metabolism, we found that 37% of its enzymes act on a variety of substrates and catalyze 65% of the known metabolic reactions. However, it is not apparent why these generalist enzymes remain. Here, we show that there are marked differences between generalist enzymes and specialist enzymes, known to catalyze a single chemical reaction on one particular substrate in vivo. Specialist enzymes (i) are frequently essential, (ii) maintain higher metabolic flux, and (iii) require more regulation of enzyme activity to control metabolic flux in dynamic environments than do generalist enzymes. Furthermore, these properties are conserved in Archaea and Eukarya. Thus, the metabolic network context and environmental conditions influence enzyme evolution toward high specificity.
To begin to understand why some enzymes are promiscuous and have many substrates, whereas others are highly specific, and why some have high activity, whereas others appear not to be optimized, Nam et al. (p. 1101) analyzed metabolic networks in bacteria. Specialist enzymes are essential for life, catalyze a high flux of enzymatic activity, and are more highly regulated. However, not all enzymes appear to be on a track of gradual improvement of specificity and efficiency. Generalist enzymes seem to well serve their own purposes, and their optimization may not justify the evolutionary cost. [PUBLICATION ABSTRACT] Enzymes are thought to have evolved highly specific catalytic activities from promiscuous ancestral proteins. By analyzing a genome-scale model of Escherichia coli metabolism, we found that 37% of its enzymes act on a variety of substrates and catalyze 65% of the known metabolic reactions. However, it is not apparent why these generalist enzymes remain. Here, we show that there are marked differences between generalist enzymes and specialist enzymes, known to catalyze a single chemical reaction on one particular substrate in vivo. Specialist enzymes (i) are frequently essential, (ii) maintain higher metabolic flux, and (iii) require more regulation of enzyme activity to control metabolic flux in dynamic environments than do generalist enzymes. Furthermore, these properties are conserved in Archaea and Eukarya. Thus, the metabolic network context and environmental conditions influence enzyme evolution toward high specificity. [PUBLICATION ABSTRACT]
Author Lerman, Joshua A.
Nam, Hojung
Lewis, Nathan E.
Chang, Roger L.
Kim, Donghyuk
Palsson, Bernhard O.
Lee, Dae-Hee
AuthorAffiliation 1 Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093-0412, USA
2 Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093-0412, USA
3 Wyss Institute for Biologically Inspired Engineering and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
AuthorAffiliation_xml – name: 2 Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093-0412, USA
– name: 3 Wyss Institute for Biologically Inspired Engineering and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
– name: 1 Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093-0412, USA
Author_xml – sequence: 1
  givenname: Hojung
  surname: Nam
  fullname: Nam, Hojung
– sequence: 2
  givenname: Nathan E.
  surname: Lewis
  fullname: Lewis, Nathan E.
– sequence: 3
  givenname: Joshua A.
  surname: Lerman
  fullname: Lerman, Joshua A.
– sequence: 4
  givenname: Dae-Hee
  surname: Lee
  fullname: Lee, Dae-Hee
– sequence: 5
  givenname: Roger L.
  surname: Chang
  fullname: Chang, Roger L.
– sequence: 6
  givenname: Donghyuk
  surname: Kim
  fullname: Kim, Donghyuk
– sequence: 7
  givenname: Bernhard O.
  surname: Palsson
  fullname: Palsson, Bernhard O.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26369425$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22936779$$D View this record in MEDLINE/PubMed
BookMark eNpdkc1vEzEQxS1URNPAmRNoJYTEZVvbE9vrCxJKw4dUwaFwtmyvlzps7NT2loa_nk2ztMBppHm_eXqjd4KOQgwOoecEnxJC-Vm23gXrTgklvOHkEZoRLFktKYYjNMMYeN1gwY7RSc5rjEdNwhN0TKkELoScofPPrvyM6Ue1jKG421Lp0FaXrne2-BgqH6py5arVTeyHu0WJ1Sr82m1cdbl11nfe-rJ7ih53us_u2TTn6Nv71dflx_riy4dPy3cXtWUgS60l5gKs5KYhFhthaeswNy0zVBIDgnTQUi0bgH1ww5q2XWhMxKLlXWeMgTl6e_DdDmbjWutCSbpX2-Q3Ou1U1F79qwR_pb7HGwUMOOZ8NHgzGaR4Pbhc1MZn6_peBxeHrAgGwRkXbI---g9dxyGF8b07CghdjEHn6OxA2RRzTq67D0Ow2jekpobU1NB48fLvH-75P5WMwOsJ0Nnqvks6WJ8fOA5cLigbuRcHbp1LTA86UN5IQeE3qLmmMQ
CODEN SCIEAS
CitedBy_id crossref_primary_10_1038_s41598_017_09581_8
crossref_primary_10_4236_ajor_2013_31A007
crossref_primary_10_1038_s41929_022_00798_z
crossref_primary_10_1038_ncomms8534
crossref_primary_10_3389_fmicb_2016_00530
crossref_primary_10_1111_jfpp_14370
crossref_primary_10_1186_s12934_022_01933_y
crossref_primary_10_1093_femsle_fny241
crossref_primary_10_1042_BCJ20160699
crossref_primary_10_1186_s13068_017_0900_3
crossref_primary_10_1186_s13321_015_0087_1
crossref_primary_10_1016_j_tibtech_2015_12_005
crossref_primary_10_1038_srep03925
crossref_primary_10_1371_journal_pcbi_1003554
crossref_primary_10_3390_ijms24108734
crossref_primary_10_1002_prot_24847
crossref_primary_10_1371_journal_pcbi_1008208
crossref_primary_10_1016_j_biotechadv_2023_108119
crossref_primary_10_1007_s12298_022_01188_2
crossref_primary_10_1021_acssynbio_9b00447
crossref_primary_10_15252_msb_20145307
crossref_primary_10_3389_fpls_2017_00613
crossref_primary_10_1002_jez_b_22562
crossref_primary_10_1016_j_scib_2023_08_056
crossref_primary_10_1371_journal_pcbi_1005895
crossref_primary_10_1016_j_pbi_2014_02_010
crossref_primary_10_15252_msb_202110427
crossref_primary_10_1038_s41540_020_00151_9
crossref_primary_10_7554_eLife_76757
crossref_primary_10_1098_rsif_2013_1190
crossref_primary_10_1002_bit_25860
crossref_primary_10_1016_j_biosystems_2015_12_004
crossref_primary_10_1134_S0003683817050131
crossref_primary_10_3389_fevo_2020_564071
crossref_primary_10_1186_s40508_016_0047_8
crossref_primary_10_1021_acssynbio_9b00318
crossref_primary_10_1038_embor_2013_178
crossref_primary_10_1016_j_gde_2022_101966
crossref_primary_10_1007_s00049_020_00322_4
crossref_primary_10_1039_C5RA23949D
crossref_primary_10_1016_j_cell_2017_12_006
crossref_primary_10_1016_j_cell_2015_05_019
crossref_primary_10_1088_1478_3975_10_1_011001
crossref_primary_10_1016_j_biotechadv_2016_11_004
crossref_primary_10_1002_anie_201300766
crossref_primary_10_3390_life7030030
crossref_primary_10_1016_j_jsb_2022_107835
crossref_primary_10_1073_pnas_1423664112
crossref_primary_10_1098_rspb_2016_1536
crossref_primary_10_1186_1752_0509_8_48
crossref_primary_10_1093_nar_gkaa446
crossref_primary_10_1002_biot_201200279
crossref_primary_10_1073_pnas_2405524121
crossref_primary_10_1039_C4CS00351A
crossref_primary_10_1016_j_copbio_2012_10_006
crossref_primary_10_1073_pnas_1414218112
crossref_primary_10_1093_gbe_evv217
crossref_primary_10_1111_acel_13595
crossref_primary_10_1038_nature12301
crossref_primary_10_1093_bib_bbz065
crossref_primary_10_1016_j_coisb_2022_100417
crossref_primary_10_1093_pcp_pct203
crossref_primary_10_1111_1462_2920_12270
crossref_primary_10_1074_jbc_M114_595363
crossref_primary_10_3390_molecules26216745
crossref_primary_10_1016_j_ymben_2021_03_013
crossref_primary_10_1021_acssynbio_9b00419
crossref_primary_10_1038_s41467_018_07652_6
crossref_primary_10_1098_rspb_2015_2572
crossref_primary_10_1074_jbc_M112_427922
crossref_primary_10_1371_journal_pcbi_1008647
crossref_primary_10_1126_science_adf2465
crossref_primary_10_1021_ci400368v
crossref_primary_10_1371_journal_pcbi_1005140
crossref_primary_10_1039_D3CC04209J
crossref_primary_10_1016_j_csbj_2020_11_050
crossref_primary_10_1186_s12915_014_0110_4
crossref_primary_10_1002_bit_25133
crossref_primary_10_1016_j_biortech_2019_121730
crossref_primary_10_1038_s41467_019_09579_y
crossref_primary_10_1186_s12918_016_0271_6
crossref_primary_10_1186_1752_0509_8_64
crossref_primary_10_1021_acscatal_3c04461
crossref_primary_10_1002_ajb2_1216
crossref_primary_10_1016_j_coisb_2019_04_004
crossref_primary_10_1371_journal_pone_0069707
crossref_primary_10_1021_acs_biochem_6b00887
crossref_primary_10_1111_1574_6968_12109
crossref_primary_10_1016_j_cej_2022_140470
crossref_primary_10_1021_jacsau_2c00344
crossref_primary_10_1042_BST20200239
crossref_primary_10_1016_j_soilbio_2014_08_021
crossref_primary_10_1038_s41467_023_40455_y
crossref_primary_10_1186_s12918_016_0343_7
crossref_primary_10_1016_j_coisb_2021_100379
crossref_primary_10_1093_jxb_ers297
crossref_primary_10_1021_acscatal_9b01031
crossref_primary_10_1371_journal_pone_0208782
crossref_primary_10_1016_j_bmc_2013_04_052
crossref_primary_10_1007_s00018_014_1643_y
crossref_primary_10_1093_bioinformatics_btu760
crossref_primary_10_1016_j_plantsci_2018_03_025
crossref_primary_10_3390_metabo11090606
crossref_primary_10_1098_rsif_2014_0419
crossref_primary_10_1016_j_rser_2021_112025
crossref_primary_10_1042_BJ20141493
crossref_primary_10_1016_j_jsb_2015_04_009
crossref_primary_10_1021_sb4001273
crossref_primary_10_1371_journal_pone_0087950
crossref_primary_10_3389_fmicb_2015_00958
crossref_primary_10_1016_j_xplc_2019_100012
crossref_primary_10_1002_ange_201300766
crossref_primary_10_1111_mmi_12801
crossref_primary_10_1080_10242422_2019_1696779
crossref_primary_10_1111_1462_2920_13950
crossref_primary_10_1093_icb_icw026
crossref_primary_10_1371_journal_pcbi_1003837
crossref_primary_10_1007_s00018_022_04579_6
crossref_primary_10_1128_mBio_02615_21
crossref_primary_10_1016_j_ymben_2017_12_002
crossref_primary_10_1093_gbe_evac114
crossref_primary_10_1096_fj_12_224014
crossref_primary_10_1080_21655979_2015_1075674
crossref_primary_10_1016_j_biotechadv_2022_108015
crossref_primary_10_1007_s11705_017_1628_0
crossref_primary_10_1038_s41598_020_75772_5
crossref_primary_10_3389_fcell_2020_00451
crossref_primary_10_1186_s12862_018_1164_7
crossref_primary_10_1371_journal_pone_0112464
crossref_primary_10_1016_j_ymben_2014_11_005
crossref_primary_10_3389_fenvs_2016_00036
crossref_primary_10_1371_journal_pone_0061348
crossref_primary_10_1016_j_ymben_2020_07_003
crossref_primary_10_1038_srep16025
crossref_primary_10_1093_nar_gky069
crossref_primary_10_1038_s42003_021_02867_8
crossref_primary_10_1021_acs_biochem_6b00723
crossref_primary_10_1093_nar_gkaa230
crossref_primary_10_1093_nar_gkz030
crossref_primary_10_1089_ind_2013_0008
crossref_primary_10_3390_ijms242216194
crossref_primary_10_1371_journal_pcbi_1004705
crossref_primary_10_1111_lam_12428
crossref_primary_10_15252_msb_20188462
crossref_primary_10_1093_molbev_msac217
crossref_primary_10_3390_metabo10040160
crossref_primary_10_1007_s00792_012_0509_1
crossref_primary_10_1042_BCJ20160289
crossref_primary_10_1016_j_micres_2016_10_006
crossref_primary_10_1093_bib_bby022
crossref_primary_10_1039_c3np70045c
crossref_primary_10_1016_j_celrep_2017_07_015
crossref_primary_10_1016_j_synbio_2017_11_002
crossref_primary_10_1093_femsle_fnad027
crossref_primary_10_1128_AEM_01709_16
crossref_primary_10_3390_jof7121020
crossref_primary_10_1021_acs_chemrev_8b00753
crossref_primary_10_1002_btpr_2233
crossref_primary_10_1016_j_gene_2015_02_032
crossref_primary_10_1016_j_copbio_2015_10_008
crossref_primary_10_3389_fchem_2017_00041
crossref_primary_10_1021_acsinfecdis_2c00402
crossref_primary_10_15252_msb_20145243
crossref_primary_10_1016_j_scitotenv_2021_151226
crossref_primary_10_1111_1462_2920_14843
crossref_primary_10_1021_acssynbio_5b00294
crossref_primary_10_1016_j_tree_2016_10_017
crossref_primary_10_1093_molbev_msad202
crossref_primary_10_1002_iub_1178
crossref_primary_10_1021_cr500628b
crossref_primary_10_1371_journal_pcbi_1004329
crossref_primary_10_1038_ncomms2246
crossref_primary_10_1038_s41467_017_02362_x
crossref_primary_10_1038_nrg3643
crossref_primary_10_1016_j_biosystems_2023_105031
crossref_primary_10_1038_nmeth_4103
crossref_primary_10_1146_annurev_biochem_062917_012023
crossref_primary_10_3390_molecules26185693
crossref_primary_10_1016_j_micres_2014_02_007
crossref_primary_10_1111_evo_13487
crossref_primary_10_1186_1752_0509_9_S3_S4
crossref_primary_10_3390_molecules23113008
crossref_primary_10_1016_j_ymben_2015_11_006
crossref_primary_10_1002_bit_27714
crossref_primary_10_1016_j_cbpa_2014_05_008
crossref_primary_10_1016_j_tibs_2018_09_015
crossref_primary_10_1042_BST20170272
crossref_primary_10_1073_pnas_1508573112
crossref_primary_10_1016_j_abb_2012_11_011
crossref_primary_10_1074_jbc_R114_572990
crossref_primary_10_1038_srep10008
crossref_primary_10_1016_j_coph_2013_05_006
crossref_primary_10_1016_j_pharmthera_2013_01_016
crossref_primary_10_1016_j_tibtech_2018_08_001
crossref_primary_10_1038_s41467_021_22022_5
crossref_primary_10_1038_nchembio_1090
crossref_primary_10_1039_c5pp00245a
crossref_primary_10_1073_pnas_1406102111
crossref_primary_10_1371_journal_pcbi_1007185
crossref_primary_10_1111_febs_13274
Cites_doi 10.1128/jb.163.1.1-7.1985
10.1074/jbc.R800048200
10.1038/nbt.1711
10.1021/bi2002289
10.1186/1752-0509-3-37
10.1093/nar/gkq1143
10.1038/msb.2010.47
10.1074/jbc.M111.274050
10.1038/nrg3033
10.1038/nrg2689
10.1074/jbc.M309578200
10.1101/gr.3832305
10.1038/msb4100046
10.1371/journal.pcbi.1001050
10.1038/msb4100155
10.1074/jbc.271.44.27795
10.1006/jtbi.1993.1202
10.1016/j.jtbi.2007.12.008
10.1128/JB.00034-09
10.1128/JB.185.9.2692-2699.2003
10.1002/jez.b.21152
10.1002/(SICI)1097-0290(19971120)56:4<398::AID-BIT6>3.0.CO;2-J
10.1046/j.0014-2956.2001.02606.x
10.1016/S0168-6445(05)80006-3
10.1016/j.bpj.2010.12.3707
10.1038/nrmicro2669
10.1074/jbc.R111.254714
10.1016/j.copbio.2011.04.016
10.1128/jb.118.1.83-88.1974
10.1021/bi101763c
10.1002/bit.260350711
10.1146/annurev-genet-102209-163517
10.1038/nature02456
10.1016/S0021-9258(17)35791-5
10.1038/nrmicro2737
10.1038/nbt.1614
10.1016/S0006-3495(02)75150-3
10.1146/annurev.mi.30.100176.002205
10.1038/nature08112
10.1046/j.1365-2958.1998.00696.x
10.1038/msb.2011.65
10.1038/ng1856
10.1038/msb4100162
10.1038/msb.2010.68
10.1371/journal.pcbi.0010068
10.1128/AEM.00373-10
10.1016/j.mib.2010.03.003
10.1093/nar/gkp896
10.1038/msb4100050
10.1038/ng1482
10.1038/msb.2011.52
10.1007/978-3-642-86659-3
10.1371/journal.pcbi.1000859
10.1038/nature01149
10.1016/j.copbio.2011.03.006
10.1073/pnas.0907176107
10.1126/science.1174671
10.1038/nbt1401
10.1128/jb.170.11.5330-5336.1988
10.1038/msb.2011.42
10.1074/mcp.M700311-MCP200
10.1371/journal.pcbi.1000938
10.1038/nature02636
10.1016/j.ymben.2003.09.002
10.1038/nchembio.495
10.1126/science.1188308
10.1146/annurev-biochem-030409-143718
10.1371/journal.pcbi.1000312
10.1038/nature02289
10.1074/mcp.M800187-MCP200
10.1073/pnas.97.10.5528
10.1038/nprot.2011.308
10.1038/nchembio.186
10.1016/S0021-9258(18)77290-6
10.1038/nrg2808
ContentType Journal Article
Copyright Copyright © 2012 American Association for the Advancement of Science
2014 INIST-CNRS
Copyright © 2012, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2012 American Association for the Advancement of Science
– notice: 2014 INIST-CNRS
– notice: Copyright © 2012, American Association for the Advancement of Science
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
DOI 10.1126/science.1216861
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE


CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
Chemistry
EISSN 1095-9203
EndPage 1104
ExternalDocumentID 2748984501
10_1126_science_1216861
22936779
26369425
23268972
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: 2R01GM057089-13
– fundername: NIGMS NIH HHS
  grantid: R01 GM057089
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R01 GM057089 || GM
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.HR
08G
0B8
0R~
0WA
123
18M
2FS
2KS
2WC
34G
36B
39C
3R3
4.4
4R4
53G
5RE
63O
68V
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABCQX
ABDBF
ABDEX
ABEFU
ABIVO
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQAM
ACQOY
ACTDY
ADDRP
ADULT
ADZLD
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFCHL
AFDAS
AFFDN
AFFNX
AFHKK
AFOSN
AFQFN
AFRAH
AGCDD
AGFXO
AGNAY
AGSOS
AHMBA
AHPSJ
AIDAL
AIDUJ
AJGZS
ALMA_UNASSIGNED_HOLDINGS
ANJGP
AQVQM
ASPBG
AVWKF
B-7
BKF
BLC
C2-
C45
CS3
DB2
DCCCD
DNJUQ
DOOOF
DU5
DWIUU
EBS
EJD
EMOBN
ESX
F5P
FA8
FEDTE
GX1
HZ~
I.T
IAO
IEA
IGG
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OK1
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
RHF
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VQA
VVN
WH7
WI4
X7M
XFK
XJF
XZL
Y6R
YCJ
YK4
YKV
YNT
YOJ
YR2
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZA5
ZCA
ZE2
~02
~H1
~KM
~ZZ
.GJ
.GO
0-V
08R
186
2XV
3EH
3V.
41~
42X
66.
692
6XO
79B
7X7
7XC
88A
88E
88I
8AF
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8W4
8WZ
97F
A6W
AADHG
AAFWJ
AAKAS
AALRV
AAYOK
ABFLS
ABJCF
ABPTK
ABQIS
ABTAH
ABUWG
ADBBV
ADGIM
ADZCM
AFKRA
AJUXI
ALSLI
ARALO
ARAPS
ATCPS
AZQEC
B4K
BBAFP
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKNYI
BKSAR
BPHCQ
BVXVI
CJNVE
D0S
D1I
D1J
D1K
DWQXO
D~A
EAU
EGS
ESL
EWM
EX3
F20
FYUFA
G8K
GICCO
GNUQQ
GUQSH
HCIFZ
HGD
HQ3
HTVGU
HVGLF
IAG
IBG
IEP
IER
IPC
IQODW
ISN
ISR
ITC
J5H
K6-
K9-
KB.
KQ8
L6V
LK5
LK8
M0K
M0L
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
N4W
P62
PATMY
PCBAR
PDBOC
PK8
PQEST
PQUKI
PROAC
PSQYO
PTHSS
PV9
PYCSY
QS-
R05
RNS
RZL
SJFOW
SKT
UBY
UHU
UKHRP
UMP
VOH
WOQ
WOW
X7L
XKJ
XOL
YJ6
YXB
ZCF
ZCG
ZGI
ZKG
ZVL
ZVM
ZXP
ZY4
~G0
ADACV
ADUKH
AFRQD
ALIPV
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
UIG
AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c539t-a90673c96b81c0b7c2de06bd5b291b371f3d2a98330036b58dd4a0174d6ffbbb3
ISSN 0036-8075
IngestDate Tue Sep 17 21:19:03 EDT 2024
Sat Aug 17 01:02:18 EDT 2024
Fri Sep 13 00:59:08 EDT 2024
Fri Aug 23 03:35:32 EDT 2024
Tue Aug 27 13:46:44 EDT 2024
Fri Nov 25 01:07:57 EST 2022
Fri Feb 02 07:03:09 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6098
Keywords Molecular evolution
Specificity
Enzyme
Escherichia coli
Selection
Bacteria
Metabolism
Gram negative bacteria
Enterobacteriaceae
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c539t-a90673c96b81c0b7c2de06bd5b291b371f3d2a98330036b58dd4a0174d6ffbbb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current address: Systems and Synthetic Biology Research Center. Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Korea
The first two authors contributed equally.
OpenAccessLink https://europepmc.org/articles/pmc3536066?pdf=render
PMID 22936779
PQID 1037312483
PQPubID 1256
PageCount 4
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3536066
proquest_miscellaneous_1037656756
proquest_journals_1037312483
crossref_primary_10_1126_science_1216861
pubmed_primary_22936779
pascalfrancis_primary_26369425
jstor_primary_23268972
PublicationCentury 2000
PublicationDate 2012-08-31
PublicationDateYYYYMMDD 2012-08-31
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-31
  day: 31
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2012
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References 21600757 - Curr Opin Biotechnol. 2011 Aug;22(4):566-75
20235827 - Annu Rev Biochem. 2010;79:471-505
20657658 - PLoS Comput Biol. 2010;6(7):e1000859
21808261 - Nat Rev Genet. 2011 Sep;12(9):591-602
17625511 - Mol Syst Biol. 2007;3:119
19363119 - J Bacteriol. 2009 Jun;191(11):3437-44
21151122 - Nat Chem Biol. 2011 Jan;7(1):58-63
22020261 - Nat Rev Microbiol. 2011 Dec;9(12):839-48
16941010 - Nat Genet. 2006 Sep;38(9):993-8
17262826 - J Exp Zool B Mol Dev Evol. 2007 May 15;308(3):322-4
791073 - Annu Rev Microbiol. 1976;30:409-25
21811229 - Mol Syst Biol. 2011;7:518
15568024 - Nat Genet. 2005 Jan;37(1):73-6
20051986 - Nat Rev Genet. 2010 Feb;11(2):97-108
15190353 - Nature. 2004 Jun 10;429(6992):661-4
19321003 - BMC Syst Biol. 2009;3:37
21481583 - Curr Opin Biotechnol. 2011 Aug;22(4):595-600
22052908 - J Biol Chem. 2011 Dec 23;286(51):43994-4004
14985762 - Nature. 2004 Feb 26;427(6977):839-43
22069330 - J Biol Chem. 2012 Jan 2;287(1):3-10
16738551 - Mol Syst Biol. 2006;2:2006.0004
22367118 - Nat Rev Microbiol. 2012 Apr;10(4):291-305
17593909 - Mol Syst Biol. 2007;3:121
21332126 - Biochemistry. 2011 Apr 5;50(13):2683-90
16738554 - Mol Syst Biol. 2006;2:2006.0008
16362071 - PLoS Comput Biol. 2005 Dec;1(7):e68
21506553 - Biochemistry. 2011 May 31;50(21):4402-10
20822442 - Annu Rev Genet. 2010;44:25-51
e_1_3_2_26_2
e_1_3_2_49_2
Lewis N. E. (e_1_3_2_8_2) 2012; 10
e_1_3_2_28_2
Gur E. (e_1_3_2_17_2) 2011; 9
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_66_2
Khersonsky O. (e_1_3_2_50_2) 2010; 79
Hopkins S. (e_1_3_2_70_2) 1986; 261
e_1_3_2_60_2
Schellenberger J. (e_1_3_2_40_2) 2011; 6
Sawers G. (e_1_3_2_74_2) 1988; 170
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_75_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_79_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_77_2
e_1_3_2_71_2
Stover P. (e_1_3_2_68_2) 1990; 265
Schirch V. (e_1_3_2_69_2) 1985; 163
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
Yu B. J. (e_1_3_2_47_2) 2008; 18
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_2_2
e_1_3_2_72_2
Cocks G. T. (e_1_3_2_62_2) 1974; 118
References_xml – volume: 163
  start-page: 1
  year: 1985
  ident: e_1_3_2_69_2
  article-title: Serine hydroxymethyltransferase from Escherichia coli: Purification and properties
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.163.1.1-7.1985
  contributor:
    fullname: Schirch V.
– ident: e_1_3_2_37_2
  doi: 10.1074/jbc.R800048200
– ident: e_1_3_2_39_2
  doi: 10.1038/nbt.1711
– ident: e_1_3_2_24_2
  doi: 10.1021/bi2002289
– ident: e_1_3_2_22_2
  doi: 10.1186/1752-0509-3-37
– ident: e_1_3_2_36_2
  doi: 10.1093/nar/gkq1143
– ident: e_1_3_2_59_2
  doi: 10.1038/msb.2010.47
– ident: e_1_3_2_30_2
  doi: 10.1074/jbc.M111.274050
– ident: e_1_3_2_28_2
  doi: 10.1038/nrg3033
– ident: e_1_3_2_4_2
  doi: 10.1038/nrg2689
– volume: 18
  start-page: 1529
  year: 2008
  ident: e_1_3_2_47_2
  article-title: The diversity of lysine-acetylated proteins in Escherichia coli
  publication-title: J. Microbiol. Biotechnol.
  contributor:
    fullname: Yu B. J.
– ident: e_1_3_2_45_2
  doi: 10.1074/jbc.M309578200
– ident: e_1_3_2_33_2
  doi: 10.1101/gr.3832305
– ident: e_1_3_2_21_2
  doi: 10.1038/msb4100046
– ident: e_1_3_2_60_2
  doi: 10.1371/journal.pcbi.1001050
– ident: e_1_3_2_6_2
  doi: 10.1038/msb4100155
– ident: e_1_3_2_73_2
  doi: 10.1074/jbc.271.44.27795
– ident: e_1_3_2_54_2
  doi: 10.1006/jtbi.1993.1202
– ident: e_1_3_2_41_2
  doi: 10.1016/j.jtbi.2007.12.008
– ident: e_1_3_2_18_2
  doi: 10.1128/JB.00034-09
– ident: e_1_3_2_57_2
  doi: 10.1128/JB.185.9.2692-2699.2003
– ident: e_1_3_2_11_2
  doi: 10.1002/jez.b.21152
– ident: e_1_3_2_55_2
  doi: 10.1002/(SICI)1097-0290(19971120)56:4<398::AID-BIT6>3.0.CO;2-J
– ident: e_1_3_2_71_2
  doi: 10.1046/j.0014-2956.2001.02606.x
– ident: e_1_3_2_75_2
  doi: 10.1016/S0168-6445(05)80006-3
– ident: e_1_3_2_43_2
  doi: 10.1016/j.bpj.2010.12.3707
– volume: 9
  start-page: 839
  year: 2011
  ident: e_1_3_2_17_2
  article-title: Regulated proteolysis in Gram-negative bacteria—how and when?
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2669
  contributor:
    fullname: Gur E.
– ident: e_1_3_2_27_2
  doi: 10.1074/jbc.R111.254714
– ident: e_1_3_2_20_2
  doi: 10.1016/j.copbio.2011.04.016
– volume: 118
  start-page: 83
  year: 1974
  ident: e_1_3_2_62_2
  article-title: Evolution of L-1, 2-propanediol catabolism in Escherichia coli by recruitment of enzymes for L-fucose and L-lactate metabolism
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.118.1.83-88.1974
  contributor:
    fullname: Cocks G. T.
– ident: e_1_3_2_5_2
  doi: 10.1021/bi101763c
– ident: e_1_3_2_53_2
  doi: 10.1002/bit.260350711
– ident: e_1_3_2_25_2
  doi: 10.1146/annurev-genet-102209-163517
– ident: e_1_3_2_32_2
  doi: 10.1038/nature02456
– volume: 261
  start-page: 3363
  year: 1986
  ident: e_1_3_2_70_2
  article-title: Properties of a serine hydroxymethyltransferase in which an active site histidine has been changed to an asparagine by site-directed mutagenesis
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)35791-5
  contributor:
    fullname: Hopkins S.
– volume: 10
  start-page: 291
  year: 2012
  ident: e_1_3_2_8_2
  article-title: Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2737
  contributor:
    fullname: Lewis N. E.
– ident: e_1_3_2_34_2
  doi: 10.1038/nbt.1614
– ident: e_1_3_2_44_2
  doi: 10.1016/S0006-3495(02)75150-3
– ident: e_1_3_2_2_2
  doi: 10.1146/annurev.mi.30.100176.002205
– ident: e_1_3_2_67_2
  doi: 10.1038/nature08112
– ident: e_1_3_2_76_2
  doi: 10.1046/j.1365-2958.1998.00696.x
– ident: e_1_3_2_52_2
  doi: 10.1038/msb.2011.65
– ident: e_1_3_2_14_2
  doi: 10.1038/ng1856
– ident: e_1_3_2_16_2
  doi: 10.1038/msb4100162
– ident: e_1_3_2_38_2
  doi: 10.1038/msb.2010.68
– ident: e_1_3_2_26_2
  doi: 10.1371/journal.pcbi.0010068
– ident: e_1_3_2_31_2
  doi: 10.1128/AEM.00373-10
– ident: e_1_3_2_42_2
  doi: 10.1016/j.mib.2010.03.003
– ident: e_1_3_2_51_2
  doi: 10.1093/nar/gkp896
– ident: e_1_3_2_12_2
  doi: 10.1038/msb4100050
– ident: e_1_3_2_7_2
  doi: 10.1038/ng1482
– ident: e_1_3_2_23_2
  doi: 10.1038/msb.2011.52
– ident: e_1_3_2_78_2
  doi: 10.1007/978-3-642-86659-3
– ident: e_1_3_2_15_2
  doi: 10.1371/journal.pcbi.1000859
– ident: e_1_3_2_61_2
  doi: 10.1038/nature01149
– ident: e_1_3_2_29_2
  doi: 10.1016/j.copbio.2011.03.006
– ident: e_1_3_2_46_2
  doi: 10.1073/pnas.0907176107
– ident: e_1_3_2_64_2
  doi: 10.1126/science.1174671
– ident: e_1_3_2_58_2
  doi: 10.1038/nbt1401
– volume: 170
  start-page: 5330
  year: 1988
  ident: e_1_3_2_74_2
  article-title: Anaerobic regulation of pyruvate formate-lyase from Escherichia coli K-12
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.170.11.5330-5336.1988
  contributor:
    fullname: Sawers G.
– ident: e_1_3_2_35_2
  doi: 10.1038/msb.2011.42
– ident: e_1_3_2_49_2
  doi: 10.1074/mcp.M700311-MCP200
– ident: e_1_3_2_65_2
  doi: 10.1371/journal.pcbi.1000938
– ident: e_1_3_2_13_2
  doi: 10.1038/nature02636
– ident: e_1_3_2_77_2
  doi: 10.1016/j.ymben.2003.09.002
– ident: e_1_3_2_19_2
  doi: 10.1038/nchembio.495
– ident: e_1_3_2_72_2
  doi: 10.1126/science.1188308
– ident: e_1_3_2_3_2
  doi: 10.1146/annurev-biochem-030409-143718
– ident: e_1_3_2_63_2
  doi: 10.1371/journal.pcbi.1000312
– ident: e_1_3_2_9_2
  doi: 10.1038/nature02289
– ident: e_1_3_2_48_2
  doi: 10.1074/mcp.M800187-MCP200
– ident: e_1_3_2_56_2
  doi: 10.1073/pnas.97.10.5528
– volume: 6
  start-page: 1290
  year: 2011
  ident: e_1_3_2_40_2
  article-title: Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox v2.0
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2011.308
  contributor:
    fullname: Schellenberger J.
– ident: e_1_3_2_66_2
  doi: 10.1038/nchembio.186
– volume: 79
  start-page: 471
  year: 2010
  ident: e_1_3_2_50_2
  article-title: Enzyme promiscuity: A Mechanistic and evolutionary perspective
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-030409-143718
  contributor:
    fullname: Khersonsky O.
– volume: 265
  start-page: 14227
  year: 1990
  ident: e_1_3_2_68_2
  article-title: Serine hydroxymethyltransferase catalyzes the hydrolysis of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)77290-6
  contributor:
    fullname: Stover P.
– ident: e_1_3_2_79_2
  doi: 10.1038/nrg2808
SSID ssj0009593
Score 2.548902
Snippet Enzymes are thought to have evolved highly specific catalytic activities from promiscuous ancestral proteins. By analyzing a genome-scale model of Escherichia...
Good Enough Can Be Good Enough To begin to understand why some enzymes are promiscuous and have many substrates, whereas others are highly specific, and why...
To begin to understand why some enzymes are promiscuous and have many substrates, whereas others are highly specific, and why some have high activity, whereas...
Enzymes are thought to have evolved highly specific catalytic activities from promiscuous ancestral proteins. By analyzing a genome-scale model of Escherichia...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1101
SubjectTerms Bacteria
Bacteriology
Biochemistry
Biological and medical sciences
Carbon
Catalysis
Chemistry
Computational Biology
Enzyme substrates
Enzymes
Enzymes - genetics
Enzymes - metabolism
Escherichia coli - enzymology
Escherichia coli - genetics
Evolution
Evolution, Molecular
Fundamental and applied biological sciences. Psychology
Gene expression regulation
Histograms
Metabolic Networks and Pathways
Metabolism
Metabolism. Enzymes
Microbiology
Modeling
Protein metabolism
rev genes
Selection, Genetic
Substrate Specificity
Title Network Context and Selection in the Evolution to Enzyme Specificity
URI https://www.jstor.org/stable/23268972
https://www.ncbi.nlm.nih.gov/pubmed/22936779
https://www.proquest.com/docview/1037312483/abstract/
https://search.proquest.com/docview/1037656756
https://pubmed.ncbi.nlm.nih.gov/PMC3536066
Volume 337
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKEBIXxAaDwJiMxGGoytTYiZ0cKyhUk-iFTeotimNH2yQStCYb25_DX8pz7CTO2KTBJapix0rzPr8f9uf3EPpAkjAnVGV-UCjmg__P_LjII58kgWIRF6FqqzV8W7HlSXi0jtaTyW-HtdTU4jC_ufNcyf9IFe6BXPUp2X-QbD8o3IDfIF-4goTh-iAZrwyHe9qmmPpluOLf28I2DoNxcWnfQbuZi_Lm-ocyVed17oh6tKvbTXTwOvudHEd-PSVxbogDHY_APuYsKqwMzJbVeWMtY8v5uTIJDVbtev10cTi0XNiF2KNqc9pk07nTpAz1XvlLpdw1Ck32iDvlbvWuTXtsrI5RtTNdJZLMqKuLqckAY0HHZqZCtVWu4KkEjqEObOHiv42AU7ZS6fQZLGbBYO-6Pf5bZrAnJ7ZhEWGpHSC1AzxCjwlPIh3gf10H9yZ2tumjnINZ3RuMPB9DftVM3GwDk7EwVVTuCnNus3Ud9-f4OXpm4xY8NyDcRhNV7qAnppLp9Q7athjY4AObyPzjC_TZ4hNbfGLAJ-7xic9KDGDCPT5xXWGDT-zg8yU6-bI4_rT0bdUOP49oUvtZomsf5QkTcZDPBM-JVDMmZCRg_gvKg4JKkiUxpfqbiSiWMszALoSSFYUQgu6irbIq1WuE4TGwf3kREpKHknMhA_ATJOOSqjyS0kMH3RdNf5rkLOk90vPQbvvF-34QSbA44cRD-yMRDB0YZQlYNA_tdTJJ7dzfpPp0LQXXOKYeet83g2bW221ZqarG9IFoiUfMQ6-MCIfBwctmnCce4iPh9h101vdxS3l22mZ_pxHViw5vHv7f36Knw6TcQ1v1RaPegStdi_0Wy38AYxPJiA
link.rule.ids 230,315,786,790,891,27957,27958
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+Context+and+Selection+in+the+Evolution+to+Enzyme+Specificity&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Nam%2C+Hojung&rft.au=Lewis%2C+Nathan+E.&rft.au=Lerman%2C+Joshua+A.&rft.au=Lee%2C+Dae-Hee&rft.date=2012-08-31&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=337&rft.issue=6098&rft.spage=1101&rft.epage=1104&rft_id=info:doi/10.1126%2Fscience.1216861&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_1216861
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon