On the figure of elastic planets I: gravitational collapse and infinitely many equilibria

A classic problem of elasticity is to determine the possible equilibria of an elastic planet modelled as a homogeneous compressible spherical elastic body subject to its own gravitational field. In the absence of gravity, the initial radius is given and the density is constant. With gravity and for...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Vol. 475; no. 2224; p. 20180815
Main Authors Jia, Fei, Kodio, Ousmane, Chapman, S. Jon, Goriely, Alain
Format Journal Article
LanguageEnglish
Published England The Royal Society Publishing 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A classic problem of elasticity is to determine the possible equilibria of an elastic planet modelled as a homogeneous compressible spherical elastic body subject to its own gravitational field. In the absence of gravity, the initial radius is given and the density is constant. With gravity and for small planets, the elastic deformations are small enough so that the spherical equilibria can be readily obtained by using the theory of linear elasticity. For larger or denser planets, large deformations occur and the general theory of nonlinear elasticity is required to obtain the solution. Depending on the elastic model, we show that there may be parameter regimes where there exist no equilibrium or arbitrarily many equilibria. Yet, at most two of them are dynamically stable with respect to radial disturbances. In some of these models, there is a critical initial radius at which spherical solutions cease to exist. For planets with larger initial radii, there is no spherical solution as the elastic forces are not sufficient to balance the gravitational force. Therefore, the system undergoes gravitational collapse, an unexpected phenomenon within the framework of classical continuum mechanics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1364-5021
1471-2946
DOI:10.1098/rspa.2018.0815