Extraction of methocarbamol from human plasma with a polypyrrole/multiwalled carbon nanotubes composite decorated with magnetic nanoparticles as an adsorbent followed by electrospray ionization ion mobility spectrometry detection

In this work, a polypyrrole/multiwalled carbon nanotubes composite decorated with Fe3O4 nanoparticles was chemically synthesized and applied as a novel adsorbent for the extraction of methocarbamol from human plasma. Electrospray ionization ion mobility spectrometry was used for the determination of...

Full description

Saved in:
Bibliographic Details
Published inJournal of separation science Vol. 37; no. 23; pp. 3518 - 3525
Main Authors Saraji, Mohammad, Khayamian, Taghi, Hashemian, Zahra
Format Journal Article
LanguageEnglish
Published Weinheim Blackwell Publishing Ltd 01.12.2014
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, a polypyrrole/multiwalled carbon nanotubes composite decorated with Fe3O4 nanoparticles was chemically synthesized and applied as a novel adsorbent for the extraction of methocarbamol from human plasma. Electrospray ionization ion mobility spectrometry was used for the determination of the analyte. The properties of the magnetic‐modified adsorbent were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform IR spectroscopy, and X‐ray diffraction. The effects of experimental parameters on the extraction efficiency of the sorbent were investigated. Under the optimized conditions, the linear dynamic range was found to be 2–150 ng/mL with the detection limit of 0.9 ng/mL. The relative standard deviation was 5.3% for three replicate measurements of methocarbamol in plasma sample. The extraction efficiency of the sorbent for the determination of different drugs with various polarities was also compared to that of Fe3O4‐polypyrrole and Fe3O4‐multiwalled carbon nanotubes sorbents. Finally, the method was used for the determination of methocarbamol in blood samples.
Bibliography:ArticleID:JSSC4002
Research Council of Isfahan University of Technology
ark:/67375/WNG-C249LPD3-R
Center of Excellency in Chemistry
istex:5793F4BFDFA654F27AB7B26FE0FD849452CFA4DC
This paper is included in the virtual special issue sample preparation in mass spectrometry available at the Journal of Separation Science website.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ISSN:1615-9306
1615-9314
1615-9314
DOI:10.1002/jssc.201400614