A Low-Dimensional Semidefinite Relaxation for the Quadratic Assignment Problem

The quadratic assignment problem (QAP) is arguably one of the hardest NP-hard discrete optimization problems. Problems of dimension greater than 25 are still considered to be large scale. Current successful solution techniques use branch-and-bound methods, which rely on obtaining strong and inexpens...

Full description

Saved in:
Bibliographic Details
Published inMathematics of operations research Vol. 34; no. 4; pp. 1008 - 1022
Main Authors Ding, Yichuan, Wolkowicz, Henry
Format Journal Article
LanguageEnglish
Published Linthicum INFORMS 01.11.2009
Institute for Operations Research and the Management Sciences
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The quadratic assignment problem (QAP) is arguably one of the hardest NP-hard discrete optimization problems. Problems of dimension greater than 25 are still considered to be large scale. Current successful solution techniques use branch-and-bound methods, which rely on obtaining strong and inexpensive bounds. In this paper, we introduce a new semidefinite programming (SDP) relaxation for generating bounds for the QAP in the trace formulation. We apply majorization to obtain a relaxation of the orthogonal similarity set of the quadratic part of the objective function. This exploits the matrix structure of QAP and results in a relaxation with much smaller dimension than other current SDP relaxations. We compare the resulting bounds with several other computationally inexpensive bounds such as the convex quadratic programming relaxation (QPB). We find that our method provides stronger bounds on average and is adaptable for branch-and-bound methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0364-765X
1526-5471
DOI:10.1287/moor.1090.0419