Manganese supplementation increases adiponectin and lowers ICAM-1 and creatinine blood levels in Zucker type 2 diabetic rats, and downregulates ICAM-1 by upregulating adiponectin multimerization protein (DsbA-L) in endothelial cells
Blood and tissue levels of manganese (Mn) are lower in type 2 diabetic and atherosclerosis patients compared with healthy subjects. Adiponectin has anti-diabetic and anti-atherogenic properties. Impairment in Disulfide bond A-like protein (DsbA-L) is associated with low adiponectin levels and diabet...
Saved in:
Published in | Molecular and cellular biochemistry Vol. 429; no. 1-2; pp. 1 - 10 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2017
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Blood and tissue levels of manganese (Mn) are lower in type 2 diabetic and atherosclerosis patients compared with healthy subjects. Adiponectin has anti-diabetic and anti-atherogenic properties. Impairment in Disulfide bond A-like protein (DsbA-L) is associated with low adiponectin levels and diabetes. This study investigates the hypothesis that the beneficial effects of Mn supplementation are mediated by adiponectin and DsbA-L. At 6 weeks of age, Male Zucker diabetic fatty rats (ZDF) were randomly divided into two groups: diabetic controls and Mn-supplemented diabetic rats. Each rat was supplemented with Mn (D+Mn, 16 mg/kg BW) or water (placebo, D+P) daily for 7 weeks by oral gavage. For cell culture studies, Human Umbilical Vein Endothelial Cells (HUVEC) or 3T3L1 adipocytes were pretreated with Mn (0–10 µM MnCl
2
) for 24 h, followed by high glucose (HG, 25 mM) or normal glucose (5 mM) exposure for another 24 h. Mn supplementation resulted in higher adiponectin (
p
= 0.01), and lower ICAM-1 (
p
= 0.04) and lower creatinine (
p
= 0.04) blood levels compared to those in control ZDF rats. Mn-supplemented rats also caused reduced oxidative stress (ROS) and NADPH oxidase, and higher DsbA-L expression in the liver (
p
= 0.03) of ZDF rats compared to those in livers of control rats; however, Fe levels in liver were lower but not significant (
p
= 0.08). Similarly, treatment with high glucose (25 mM) caused a decrease in DsbA-L, which was prevented by Mn supplementation in HUVEC and adipocytes. Mechanistic studies with DsbA-L siRNA showed that the beneficial effects of Mn supplementation on ROS, NOX4, and ICAM-1 expression were abolished in DsbA-L knock-down HUVEC. These studies demonstrate that DsbA-L-linked adiponectin mediates the beneficial effects observed with Mn supplementation and provides evidence for a novel mechanism by which Mn supplementation can increase adiponectin and reduce the biomarkers of endothelial dysfunction in diabetes. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0300-8177 1573-4919 1573-4919 |
DOI: | 10.1007/s11010-016-2931-7 |