Geographic location, local environment, and individual size mediate the effects of climate warming and neighbors on a benefactor plant

Predictions of plant responses to global warming frequently ignore biotic interactions and intraspecific variation across geographical ranges. Benefactor species play an important role in plant communities by protecting other taxa from harsh environments, but the combined effects of warming and bene...

Full description

Saved in:
Bibliographic Details
Published inOecologia Vol. 189; no. 1; pp. 243 - 253
Main Authors Villellas, Jesús, García, María B., Morris, William F.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Science + Business Media 01.01.2019
Springer Berlin Heidelberg
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Predictions of plant responses to global warming frequently ignore biotic interactions and intraspecific variation across geographical ranges. Benefactor species play an important role in plant communities by protecting other taxa from harsh environments, but the combined effects of warming and beneficiary species on their performance have been largely unexamined. We analyzed the joint effects of elevated temperature and neighbor removal on the benefactor plant Silene acaulis, in factorial experiments near its low- and high-latitude range limits in Europe. We recorded growth, probability of reproduction and fruit set during 3 years. The effects of enhanced temperature were positive near the northern limit and negative in the south for some performance measures. This pattern was stronger in the presence of neighbors, possibly due to differential thermal tolerances between S. acaulis and beneficiary species in each location. Neighbors generally had a negative or null impact on S. acaulis, in agreement with previous reviews of overall effects of plant–plant interactions on benefactors. However, small S. acaulis individuals in the north showed higher growth when surrounded by neighbors. Finally, the local habitat within each location influenced some effects of experimental treatments. Overall, we show that plant responses to rising temperatures may strongly depend on their position within the geographic range, and on species interactions. Our results also highlight the need to consider features of the interacting taxa, such as whether they are benefactor species, as well as local-scale environmental variation, to predict the joint effects of global warming and biotic interactions on species and communities.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0029-8549
1432-1939
DOI:10.1007/s00442-018-4304-2