Evolutionary Computing and Optimal Design of MEMS
Fostered by the development of new technologies, microelectromechanical systems (MEMS) are massively present on board of vehicles, within information equipment as well as in medical and healthcare equipment. A smart approach to the design of MEMS devices is in terms of the simultaneous optimization...
Saved in:
Published in | IEEE/ASME transactions on mechatronics Vol. 20; no. 4; pp. 1660 - 1667 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1083-4435 1941-014X |
DOI | 10.1109/TMECH.2014.2343241 |
Cover
Loading…
Summary: | Fostered by the development of new technologies, microelectromechanical systems (MEMS) are massively present on board of vehicles, within information equipment as well as in medical and healthcare equipment. A smart approach to the design of MEMS devices is in terms of the simultaneous optimization of multiple objective functions subject to a set of constraints. This leads to the family of solutions minimizing the degree of conflict among the objectives (Pareto front). Accordingly, in this paper, a procedure of optimal shape design of MEMS based on evolutionary computing is proposed and validated on three case studies. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1083-4435 1941-014X |
DOI: | 10.1109/TMECH.2014.2343241 |