Wear Resistance of 3D Printing Resin Material Opposing Zirconia and Metal Antagonists

3D printing offers many advantages in dental prosthesis manufacturing. This study evaluated the wear resistance of 3D printing resin material compared with milling and conventional resin materials. Sixty substrate specimens were prepared with three types of resin materials: 3D printed resin, milled...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 11; no. 6; p. 1043
Main Authors Park, Ji-Man, Ahn, Jin-Soo, Cha, Hyun-Suk, Lee, Joo-Hee
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 20.06.2018
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:3D printing offers many advantages in dental prosthesis manufacturing. This study evaluated the wear resistance of 3D printing resin material compared with milling and conventional resin materials. Sixty substrate specimens were prepared with three types of resin materials: 3D printed resin, milled resin, and self-cured resin. The 3D printed specimens were printed at a build angle of 0° and 100 μm layer thickness by digital light processing 3D printing. Two kinds of abraders were made of zirconia and CoCr alloy. The specimens were loaded at 5 kg for 30,000 chewing cycles with vertical and horizontal movements under thermocycling condition. The 3D printed resin did not show significant difference in the maximal depth loss or the volume loss of wear compared to the milled and the self-cured resins. No significant difference was revealed depending on the abraders in the maximal depth loss or the volume loss of wear. In SEM views, the 3D printed resin showed cracks and separation of inter-layer bonds when opposing the metal abrader. The results suggest that the 3D printing using resin materials provides adequate wear resistance for dental use.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma11061043