Hydrogeochemical evolution of groundwater in a Quaternary sediment and Cretaceous sandstone unconfined aquifer in Northwestern China
A better understanding of the hydrogeochemical evolution of groundwater in vulnerable aquifers is important for the protection of water resources. To assess groundwater chemistry, groundwater sampling was performed from different representative aquifers in 2012–2013. A Piper trilinear diagram showed...
Saved in:
Published in | Environmental earth sciences Vol. 77; no. 18; pp. 1 - 10 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A better understanding of the hydrogeochemical evolution of groundwater in vulnerable aquifers is important for the protection of water resources. To assess groundwater chemistry, groundwater sampling was performed from different representative aquifers in 2012–2013. A Piper trilinear diagram showed that the groundwater types can be classified into Na–SO
4
and Na–Cl types. Only one groundwater sample was Na–HCO
3
type. The dominant cations for all samples were Na
+
. However, the dominant anions varied from HCO
3
−
to SO
4
2−
, and as well Cl
−
. The mean total dissolved solid (TDS) content of groundwater in the region was 1889 mg/L. Thus, only 20% of groundwater samples meet Chinese drinking water standards (< 1000 mg/L). Principal component analysis (PCA) combined with hierarchical cluster analysis (HCA) and self-organizing maps (SOM) were applied for the classification of the groundwater geochemistry. The three first principal components explained 58, 20, and 16% of the variance, respectively. The first component reflects sulfate minerals (gypsum, anhydrite) and halite dissolution, and/or evaporation in the shallow aquifer. The second and third components are interpreted as carbonate rock dissolution. The reason for two factors is that the different aquifers give rise to different degree of hydrogeochemical evolution (different travel distances and travel times). Identified clusters for evolution characteristic and influencing factors were confirmed by the PCA–HCA methods. Using information from eight ion components and SOM, formation mechanisms and influencing factors for the present groundwater quality were determined. |
---|---|
ISSN: | 1866-6280 1866-6299 |
DOI: | 10.1007/s12665-018-7816-5 |