Hyperfine‐Interaction‐Driven Suppression of Quantum Tunneling at Zero Field in a Holmium(III) Single‐Ion Magnet
An extremely rare non‐Kramers holmium(III) single‐ion magnet (SIM) is reported to be stabilized in the pentagonal‐bipyramidal geometry by a phosphine oxide with a high energy barrier of 237(4) cm−1. The suppression of the quantum tunneling of magnetization (QTM) at zero field and the hyperfine struc...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 56; no. 18; pp. 4996 - 5000 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
24.04.2017
Wiley-VCH Verlag |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An extremely rare non‐Kramers holmium(III) single‐ion magnet (SIM) is reported to be stabilized in the pentagonal‐bipyramidal geometry by a phosphine oxide with a high energy barrier of 237(4) cm−1. The suppression of the quantum tunneling of magnetization (QTM) at zero field and the hyperfine structures originating from field‐induced QTMs can be observed even from the field‐dependent alternating‐current magnetic susceptibility in addition to single‐crystal hysteresis loops. These dramatic dynamics were attributed to the combination of the favorable crystal‐field environment and the hyperfine interactions arising from 165Ho (I=7/2) with a natural abundance of 100 %.
An extremely rare non‐Kramers holmium(III) single‐ion magnet is reported. The suppression of the quantum tunneling of magnetization at zero field and the hyperfine structures were observed in AC magnetic susceptibility measurements, and were attributed to the combination of a favorable crystal‐field environment and the hyperfine interactions arising from 165Ho (I=7/2) with a natural abundance of 100 %. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.201701480 |