NMDA 2A receptors in parvalbumin cells mediate sex-specific rapid ketamine response on cortical activity

Ketamine has emerged as a widespread treatment for a variety of psychiatric disorders when used at sub-anesthetic doses, but the neural mechanisms underlying its acute action remain unclear. Here, we identified NMDA receptors containing the 2A subunit (GluN2A) on parvalbumin (PV)-expressing inhibito...

Full description

Saved in:
Bibliographic Details
Published inMolecular psychiatry Vol. 24; no. 6; pp. 828 - 838
Main Authors Picard, Nathalie, Takesian, Anne E., Fagiolini, Michela, Hensch, Takao K.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ketamine has emerged as a widespread treatment for a variety of psychiatric disorders when used at sub-anesthetic doses, but the neural mechanisms underlying its acute action remain unclear. Here, we identified NMDA receptors containing the 2A subunit (GluN2A) on parvalbumin (PV)-expressing inhibitory interneurons as a pivotal target of low-dose ketamine. Genetically deleting GluN2A receptors globally or selectively from PV interneurons abolished the rapid enhancement of visual cortical responses and gamma-band oscillations by ketamine. Moreover, during the follicular phase of the estrous cycle in female mice, the ketamine response was transiently attenuated along with a concomitant decrease of grin2A mRNA expression within PV interneurons. Thus, GluN2A receptors on PV interneurons mediate the immediate actions of low-dose ketamine treatment, and fluctuations in receptor expression across the estrous cycle may underlie sex-differences in drug efficacy.
ISSN:1359-4184
1476-5578
DOI:10.1038/s41380-018-0341-9