IntelliO3-ts v1.0: a neural network approach to predict near-surface ozone concentrations in Germany

The prediction of near-surface ozone concentrations is important for supporting regulatory procedures for the protection of humans from high exposure to air pollution. In this study, we introduce a data-driven forecasting model named “IntelliO3-ts”, which consists of multiple convolutional neural ne...

Full description

Saved in:
Bibliographic Details
Published inGeoscientific Model Development Vol. 14; no. 1; pp. 1 - 25
Main Authors Kleinert, Felix, Leufen, Lukas H, Schultz, Martin G
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 04.01.2021
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The prediction of near-surface ozone concentrations is important for supporting regulatory procedures for the protection of humans from high exposure to air pollution. In this study, we introduce a data-driven forecasting model named “IntelliO3-ts”, which consists of multiple convolutional neural network (CNN) layers, grouped together as inception blocks. The model is trained with measured multi-year ozone and nitrogen oxide concentrations of more than 300 German measurement stations in rural environments and six meteorological variables from the meteorological COSMO reanalysis. This is by far the most extensive dataset used for time series predictions based on neural networks so far. IntelliO3-ts allows the prediction of daily maximum 8 h average (dma8eu) ozone concentrations for a lead time of up to 4 d, and we show that the model outperforms standard reference models like persistence models. Moreover, we demonstrate that IntelliO3-ts outperforms climatological reference models for the first 2 d, while it does not add any genuine value for longer lead times. We attribute this to the limited deterministic information that is contained in the single-station time series training data. We applied a bootstrapping technique to analyse the influence of different input variables and found that the previous-day ozone concentrations are of major importance, followed by 2 m temperature. As we did not use any geographic information to train IntelliO3-ts in its current version and included no relation between stations, the influence of the horizontal wind components on the model performance is minimal. We expect that the inclusion of advection–diffusion terms in the model could improve results in future versions of our model.
ISSN:1991-9603
1991-959X
1991-962X
1991-9603
1991-962X
DOI:10.5194/gmd-14-1-2021