Lupin protein influences the expression of hepatic genes involved in fatty acid synthesis and triacylglycerol hydrolysis of adult rats

To assess the effect of lupin protein on concentrations of lipids in plasma lipoproteins and liver and hepatic mRNA concentrations of genes involved in lipid metabolism, adult rats were fed egg albumin-based diets containing either lupin protein from Lupinus albus or casein (50 g/kg) supplemented (h...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of nutrition Vol. 99; no. 5; pp. 952 - 962
Main Authors Bettzieche, Anja, Brandsch, Corinna, Weiße, Kristin, Hirche, Frank, Eder, Klaus, Stangl, Gabriele I.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.05.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To assess the effect of lupin protein on concentrations of lipids in plasma lipoproteins and liver and hepatic mRNA concentrations of genes involved in lipid metabolism, adult rats were fed egg albumin-based diets containing either lupin protein from Lupinus albus or casein (50 g/kg) supplemented (hypercholesterolaemic) or not (normolipaemic) with a cholesterol–cholate mixture for 20 d. Lupin protein compared with casein lowered the concentrations of TAG in liver (P < 0·01) and circulating VLDL + chylomicrons (P < 0·05) of hypercholesterolaemic rats, but not of normolipaemic rats. Hepatic mRNA concentrations of genes involved in fatty acid synthesis such as sterol regulatory element-binding protein-1c, glucose-6-phosphate dehydrogenase, fatty acid synthase, stearoyl-CoA desaturase-1 and acyl-CoA:glycerol-3-phosphate acyltransferase were lower and mRNA concentrations of lipoprotein lipase, hepatic lipase and apoA5 involved in TAG hydrolysis were higher in rats fed lupin protein than in rats fed casein. These effects were stronger in hypercholesterolaemic rats than in normolipaemic rats. Hypercholesterolaemic rats fed the lupin protein had higher liver cholesterol concentrations (P < 0·01) and lower levels of LDL-cholesterol (P < 0·05) than rats fed casein. No effect of lupin protein was observed on cholesterol concentration in VLDL + chylomicrons and HDL and hepatic mRNA concentrations of genes involved in cholesterol and bile acid metabolism. In conclusion, the present study shows that lupin protein has hypotriacylglycerolaemic action possibly via down regulation of fatty acid synthesis genes and up regulation of genes involved in TAG hydrolysis. Alterations in cholesterol metabolism could not be explained on the basis of mRNA data.
Bibliography:Abbreviations: ABC, ATP-binding cassette transporter; ACAT, acyl-CoA cholesterol acyltransferase; CYP7A1, cholesterol 7α-hydroxylase; FAS, fatty acid synthase; GAPDH, glyceraldehyde-3-phosphate-dehydrogenase; GPAT, acyl-CoA:glycerol-3-phosphate acyltransferase; G6PDH, glucose-6-phosphate dehydrogenase; HL, hepatic lipase; HMG, 3-hydroxy-3-methylglutaryl; LCAT, lecithin:cholesterol acyltransferase; LPL, lipoprotein lipase; LXR, liver X receptor; SCD1, stearoyl-CoA desaturase-1; SREBP, sterol regulatory element-binding protein
PII:S0007114507857266
ArticleID:85726
istex:C4B11581B32F1DA3F3E58282BF1D04FF71C9636F
ark:/67375/6GQ-DT38NSKV-J
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0007-1145
1475-2662
DOI:10.1017/S0007114507857266