CircRNA-CIDN mitigated compression loading-induced damage in human nucleus pulposus cells via miR-34a-5p/SIRT1 axis

Intervertebral disc degeneration (IDD) is a major contributor to lower back pain, however, the molecular and pathogenetic mechanisms underlying IDD are poorly understood. As a high-risk factor for IDD, compression stress was reported to induce apoptosis of nucleus pulposus (NP) cells and extracellul...

Full description

Saved in:
Bibliographic Details
Published inEBioMedicine Vol. 53; p. 102679
Main Authors Xiang, Qian, Kang, Liang, Wang, Juntan, Liao, Zhiwei, Song, Yu, Zhao, Kangcheng, Wang, Kun, Yang, Cao, Zhang, Yukun
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Intervertebral disc degeneration (IDD) is a major contributor to lower back pain, however, the molecular and pathogenetic mechanisms underlying IDD are poorly understood. As a high-risk factor for IDD, compression stress was reported to induce apoptosis of nucleus pulposus (NP) cells and extracellular matrix (ECM) degradation during IDD progression. Circular RNA (circRNA) is a class of endogenous non-coding RNA (ncRNA) and has been reported to function in several diseases. However, whether and how circRNA regulates compression-induced damage of NP cells remains vague. Here, we aimed to investigate the key role of circRNA in compression loading-induced IDD. We analysed the circRNA expression of three samples from compression-treated NP cells and three control samples using circRNA microarray assays and further investigated the circRNA involved in compression-induced damage of NP cells (circRNA-CIDN). We investigated the effects of circRNA-CIDN on compression-induced cell apoptosis and NP ECM degradation in vitro and ex vivo. We observed that circRNA-CIDN bound to miRNAs as a miRNA sponge based on luciferase and RNA immunoprecipitation (RIP) assays. CircRNA-CIDN was significantly downregulated in compression-treated human NP cells, as validated by circRNA microarray and qRT-PCR analysis, and overexpressing circRNA-CIDN inhibited compression-induced apoptosis and NP ECM degradation. Further studies demonstrated that circRNA-CIDN served as a sponge for miR-34a-5p, an important miRNA that enhanced compression-induced damage of NP cells via repressing the silent mating type information regulation 2 homolog 1 (SIRT1). CircRNA-CIDN was also verified to contain IDD development in an ex vivo IDD model. Our results revealed that circRNA-CIDN binding to miR-34a-5p played an important role in mitigating compression loading-induced nucleus pulposus cell damage via targeting SIRT1, providing a potential therapeutic strategy for IDD treatment. National Natural Science Foundation of China (81772391, 81974348), Fundamental Research Funds for the Central Universities (2017KFYXJJ248).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:2352-3964
2352-3964
DOI:10.1016/j.ebiom.2020.102679