Quantification of the accuracy of MRI generated 3D models of long bones compared to CT generated 3D models

Abstract Orthopaedic fracture fixation implants are increasingly being designed using accurate 3D models of long bones based on computer tomography (CT). Unlike CT, magnetic resonance imaging (MRI) does not involve ionising radiation and is therefore a desirable alternative to CT. This study aims to...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 34; no. 3; pp. 357 - 363
Main Authors Rathnayaka, Kanchana, Momot, Konstantin I, Noser, Hansrudi, Volp, Andrew, Schuetz, Michael A, Sahama, Tony, Schmutz, Beat
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.04.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Orthopaedic fracture fixation implants are increasingly being designed using accurate 3D models of long bones based on computer tomography (CT). Unlike CT, magnetic resonance imaging (MRI) does not involve ionising radiation and is therefore a desirable alternative to CT. This study aims to quantify the accuracy of MRI-based 3D models compared to CT-based 3D models of long bones. The femora of five intact cadaver ovine limbs were scanned using a 1.5 T MRI and a CT scanner. Image segmentation of CT and MRI data was performed using a multi-threshold segmentation method. Reference models were generated by digitising the bone surfaces free of soft tissue with a mechanical contact scanner. The MRI- and CT-derived models were validated against the reference models. The results demonstrated that the CT-based models contained an average error of 0.15 mm while the MRI-based models contained an average error of 0.23 mm. Statistical validation shows that there are no significant differences between 3D models based on CT and MRI data. These results indicate that the geometric accuracy of MRI based 3D models was comparable to that of CT-based models and therefore MRI is a potential alternative to CT for generation of 3D models with high geometric accuracy.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1350-4533
1873-4030
DOI:10.1016/j.medengphy.2011.07.027