How biological attention mechanisms improve task performance in a large-scale visual system model
How does attentional modulation of neural activity enhance performance? Here we use a deep convolutional neural network as a large-scale model of the visual system to address this question. We model the feature similarity gain model of attention, in which attentional modulation is applied according...
Saved in:
Published in | eLife Vol. 7 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
eLife Science Publications, Ltd
01.10.2018
eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | How does attentional modulation of neural activity enhance performance? Here we use a deep convolutional neural network as a large-scale model of the visual system to address this question. We model the feature similarity gain model of attention, in which attentional modulation is applied according to neural stimulus tuning. Using a variety of visual tasks, we show that neural modulations of the kind and magnitude observed experimentally lead to performance changes of the kind and magnitude observed experimentally. We find that, at earlier layers, attention applied according to tuning does not successfully propagate through the network, and has a weaker impact on performance than attention applied according to values computed for optimally modulating higher areas. This raises the question of whether biological attention might be applied at least in part to optimize function rather than strictly according to tuning. We suggest a simple experiment to distinguish these alternatives.
Imagine you have lost your cell phone. Your eyes scan the cluttered table in front of you, searching for its familiar blue case. But what is happening within the visual areas of your brain while you search? One possibility is that neurons that represent relevant features such as 'blue' and 'rectangular' increase their activity. This might help you spot your phone among all the other objects on the table.
Paying attention to specific features improves our performance on visual tasks that require detecting those features. The 'feature similarity gain model' proposes that this is because attention increases the activity of neurons sensitive to specific target features, such as ‘blue’ in the example above. But is this how the brain solves such challenges in practice? Previous studies examining this issue have relied on correlations. They have shown that increases in neural activity correlate with improved performance on visual tasks. But correlation does not imply causation.
Lindsay and Miller have now used a computer model of the brain’s visual pathway to examine whether changes in neural activity cause improved performance. The model was trained to use feature similarity gain to detect an object within a set of photographs. As predicted, changes in activity like those that occur in the brain did indeed improve the model’s performance. Moreover, activity changes at later stages of the model's processing pathway produced bigger improvements than activity changes earlier in the pathway. This may explain why attention affects neural activity more at later stages in the visual pathway.
But feature similarity gain is not the only possible explanation for the results. Lindsay and Miller show that another pattern of activity change also enhanced the model’s performance, and propose an experiment to distinguish between the two possibilities. Overall, these findings increase our understanding of how the brain processes sensory information. Work is ongoing to teach computers to process images as efficiently as the human visual system. The computer model used in this study is similar to those used in state-of-the-art computer vision. These findings could thus help advance artificial sensory processing too. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2050-084X 2050-084X |
DOI: | 10.7554/eLife.38105 |