Convolutional Neural Network for Individual Identification Using Phase Space Reconstruction of Electrocardiogram

Electrocardiogram (ECG) biometric provides an authentication to identify an individual on the basis of specific cardiac potential measured from a living body. Convolutional neural networks (CNN) outperform traditional ECG biometrics because convolutions can produce discernible features from ECG thro...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 6; p. 3164
Main Authors Chan, Hsiao-Lung, Chang, Hung-Wei, Hsu, Wen-Yen, Huang, Po-Jung, Fang, Shih-Chin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.03.2023
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23063164

Cover

More Information
Summary:Electrocardiogram (ECG) biometric provides an authentication to identify an individual on the basis of specific cardiac potential measured from a living body. Convolutional neural networks (CNN) outperform traditional ECG biometrics because convolutions can produce discernible features from ECG through machine learning. Phase space reconstruction (PSR), using a time delay technique, is one of the transformations from ECG to a feature map, without the need of exact R-peak alignment. However, the effects of time delay and grid partition on identification performance have not been investigated. In this study, we developed a PSR-based CNN for ECG biometric authentication and examined the aforementioned effects. Based on a population of 115 subjects selected from the PTB Diagnostic ECG Database, a higher identification accuracy was achieved when the time delay was set from 20 to 28 ms, since it produced a well phase-space expansion of P, QRS, and T waves. A higher accuracy was also achieved when a high-density grid partition was used, since it produced a fine-detail phase-space trajectory. The use of a scaled-down network for PSR over a low-density grid with 32 × 32 partitions achieved a comparable accuracy with using a large-scale network for PSR over 256 × 256 partitions, but it had the benefit of reductions in network size and training time by 10 and 5 folds, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s23063164