SARS‐CoV‐2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIG‐I/MDA‐5–MAVS, TLR3–TRIF, and cGAS–STING signaling pathways

The suppression of types I and III interferon (IFN) responses by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) contributes to the pathogenesis of coronavirus disease 2019 (COVID‐19). The strategy used by SARS‐CoV‐2 to evade antiviral immunity needs further investigation. Here, we repo...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical virology Vol. 93; no. 9; pp. 5376 - 5389
Main Authors Han, Lulu, Zhuang, Meng‐Wei, Deng, Jian, Zheng, Yi, Zhang, Jing, Nan, Mei‐Ling, Zhang, Xue‐Jing, Gao, Chengjiang, Wang, Pei‐Hui
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.09.2021
John Wiley and Sons Inc
Subjects
DNA
Online AccessGet full text

Cover

Loading…
More Information
Summary:The suppression of types I and III interferon (IFN) responses by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) contributes to the pathogenesis of coronavirus disease 2019 (COVID‐19). The strategy used by SARS‐CoV‐2 to evade antiviral immunity needs further investigation. Here, we reported that SARS‐CoV‐2 ORF9b inhibited types I and III IFN production by targeting multiple molecules of innate antiviral signaling pathways. SARS‐CoV‐2 ORF9b impaired the induction of types I and III IFNs by Sendai virus and poly (I:C). SARS‐CoV‐2 ORF9b inhibited the activation of types I and III IFNs induced by the components of cytosolic dsRNA‐sensing pathways of RIG‐I/MDA5‐MAVS signaling, including RIG‐I, MDA‐5, MAVS, TBK1, and IKKε, rather than IRF3‐5D, which is the active form of IRF3. SARS‐CoV‐2 ORF9b also suppressed the induction of types I and III IFNs by TRIF and STING, which are the adaptor protein of the endosome RNA‐sensing pathway of TLR3‐TRIF signaling and the adaptor protein of the cytosolic DNA‐sensing pathway of cGAS–STING signaling, respectively. A mechanistic analysis revealed that the SARS‐CoV‐2 ORF9b protein interacted with RIG‐I, MDA‐5, MAVS, TRIF, STING, and TBK1 and impeded the phosphorylation and nuclear translocation of IRF3. In addition, SARS‐CoV‐2 ORF9b facilitated the replication of the vesicular stomatitis virus. Therefore, the results showed that SARS‐CoV‐2 ORF9b negatively regulates antiviral immunity and thus facilitates viral replication. This study contributes to our understanding of the molecular mechanism through which SARS‐CoV‐2 impairs antiviral immunity and provides an essential clue to the pathogenesis of COVID‐19.
Bibliography:Lulu Han, Meng‐Wei Zhuang, and Jian Deng contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0146-6615
1096-9071
1096-9071
DOI:10.1002/jmv.27050