Association of cerebrospinal fluid anti-Sm antibodies with acute confusional state in systemic lupus erythematosus

Neuropsychiatric manifestation in systemic lupus erythematosus (NPSLE) is one of the most serious complications of the disease. Previous studies revealed the strong association between serum anti-Sm and organic brain syndrome, consisting mainly of acute confusional state (ACS) of diffuse psychiatric...

Full description

Saved in:
Bibliographic Details
Published inArthritis research & therapy Vol. 16; no. 5; p. 450
Main Authors Hirohata, Shunsei, Sakuma, Yuko, Yanagida, Tamiko, Yoshio, Taku
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 02.10.2014
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Neuropsychiatric manifestation in systemic lupus erythematosus (NPSLE) is one of the most serious complications of the disease. Previous studies revealed the strong association between serum anti-Sm and organic brain syndrome, consisting mainly of acute confusional state (ACS) of diffuse psychiatric/neuropsychological syndromes (diffuse NPSLE). However, the precise mechanism by which anti-Sm causes diffuse NPSLE remains unclear. Of note, recent studies demonstrated that anti-U1 RNP antibodies (anti-RNP) in cerebrospinal fluid (CSF) are associated with NPSLE. The present study was designed to explore the association of anti-Sm antibodies in CSF with NPSLE. Paired serum and CSF specimens were obtained from 72 patients with NPSLE (49 with diffuse NPSLE, 23 with neurological syndromes or peripheral neuropathy (focal NPSLE) and from 22 control patients with non-SLE neurological diseases. Sera were also obtained from 41 patients with active SLE without neuropsychiatric manifestations (non-NPSLE). Anti-Sm and anti-RNP were measured by enzyme-linked immunosorbent assay (ELISA). Blood-brain barrier (BBB) function and intrathecal anti-Sm production were evaluated by Q albumin and CSF anti-Sm index, respectively. Binding of anti-Sm to neuroblastoma cell lines SK-N-MC and Neuro2a was examined by flow cytometry and by cell ELISA. Anti-Sm and anti-RNP in CSF and sera were elevated in NPSLE compared with non-SLE control. CSF anti-Sm, but not CSF anti-RNP, was significantly elevated in ACS compared with non-ACS diffuse NPSLE or with focal NPSLE. By contrast, there were no significant differences in serum anti-Sm or anti-RNP among subsets of NPSLE and non-NPSLE. Whereas there were no significant differences in CSF anti-Sm index, Q albumin was elevated in ACS compared with non-ACS or with focal NPSLE. Notably, CSF anti-Sm was correlated with Q albumin (r = 0.2373, P = 0.0447) or with serum anti-Sm (r = 0.7185, P <0.0001) in 72 patients with NPSLE. Finally, monoclonal anti-Sm and purified human anti-Sm bound to the surface of SK-N-MC and Neuro2a. These results demonstrate that the elevation of CSF anti-Sm through transudation from systemic circulation due to damaged BBB plays a critical role in the pathogenesis of ACS. More importantly, the data indicate that anti-Sm is yet another autoantibody with presumed neural toxicity, but might not be the last.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1478-6354
1478-6362
1478-6354
DOI:10.1186/s13075-014-0450-z